Lamin A/C deficiency in CD4
Adoptive Transfer
Animals
Cell Differentiation
Colitis
/ immunology
Colon
/ immunology
Dendritic Cells
/ immunology
Disease Models, Animal
Forkhead Transcription Factors
/ genetics
Homeodomain Proteins
/ genetics
Lamin Type A
/ deficiency
Lymph Nodes
/ immunology
Mice, Knockout
Signal Transduction
T-Box Domain Proteins
/ genetics
T-Lymphocytes, Regulatory
/ immunology
Th1 Cells
/ immunology
Tretinoin
/ metabolism
CD4+ T-cells
FOXP3
inflammatory bowel disease
lamin A/C
regulatory T-cell
Journal
The Journal of pathology
ISSN: 1096-9896
Titre abrégé: J Pathol
Pays: England
ID NLM: 0204634
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
16
02
2019
revised:
15
07
2019
accepted:
29
07
2019
pubmed:
3
8
2019
medline:
21
4
2020
entrez:
3
8
2019
Statut:
ppublish
Résumé
The mechanisms by which lamin A/C in CD4
Substances chimiques
Forkhead Transcription Factors
0
Foxp3 protein, mouse
0
Homeodomain Proteins
0
Lamin Type A
0
Lmna protein, mouse
0
T-Box Domain Proteins
0
T-box transcription factor TBX21
0
RAG-1 protein
128559-51-3
Tretinoin
5688UTC01R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
509-522Informations de copyright
© 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Références
Dechat T, Adam SA, Taimen P, et al. Nuclear lamins. Cold Spring Harb Perspect Biol 2010; 2: a000547.
Moir RD, Yoon M, Khuon S, et al. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151: 1155-1168.
Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res 2007; 313: 2167-2179.
Andres V, Gonzalez JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 2009; 187: 945-957.
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28: 445-489.
Tai Y, Wang Q, Korner H, et al. Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases. Front Pharmacol 2018; 9: 642.
Davis SJ, van der Merwe PA. The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 2006; 7: 803-809.
Gonzalez-Granado JM, Silvestre-Roig C, Rocha-Perugini V, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7: ra37.
Nakayama T, Yamashita M. The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol 2010; 22: 303-309.
Luckheeram RV, Zhou R, Verma AD, et al. CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135.
Toribio-Fernandez R, Zorita V, Rocha-Perugini V, et al. Lamin A/C augments Th1 differentiation and response against vaccinia virus and Leishmania major. Cell Death Dis 2018; 9: 9.
Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014; 40: 569-581.
Li B, Zheng SG. How regulatory T cells sense and adapt to inflammation. Cell Mol Immunol 2015; 12: 519-520.
Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med 2002; 8: 567-573.
Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 2006; 212: 256-271.
Morrissey PJ, Charrier K, Braddy S, et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178: 237-244.
Powrie F, Leach MW, Mauze S, et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461-1471.
Niessner M, Volk BA. Phenotypic and immunoregulatory analysis of intestinal T-cells in patients with inflammatory bowel disease: evaluation of an in vitro model. Eur J Clin Invest 1995; 25: 155-164.
Kosiewicz MM, Nast CC, Krishnan A, et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J Clin Invest 2001; 107: 695-702.
Kang SG, Piniecki RJ, Hogenesch H, et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology 2007; 132: 966-981.
Gomez-Serrano M, Camafeita E, Garcia-Santos E, et al. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Sci Rep 2016; 6: 25756.
Trevisan-Herraz M, Bagwan N, Garcia-Marques F, et al. SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments. Bioinformatics 2019; 35: 1594-1596.
Garcia-Marques F, Trevisan-Herraz M, Martinez-Martinez S, et al. A novel systems-biology algorithm for the analysis of coordinated protein responses using quantitative proteomics. Mol Cell Proteomics 2016; 15: 1740-1760.
Oldenburg AR, Collas P. Mapping nuclear lamin-genome interactions by chromatin immunoprecipitation of nuclear lamins. Methods Mol Biol 2016; 1411: 315-324.
Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2013; 2: e60.
Markiewicz E, Dechat T, Foisner R, et al. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13: 4401-4413.
Morinobu A, Kanno Y, O'Shea JJ. Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression. J Biol Chem 2004; 279: 40640-40646.
Lund E, Collas P. Nuclear lamins: making contacts with promoters. Nucleus 2013; 4: 424-430.
Ronningen T, Shah A, Oldenburg AR, et al. Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Res 2015; 25: 1825-1835.
Kouznetsova VL, Tchekanov A, Li X, et al. Polycomb repressive 2 complex - molecular mechanisms of function. Protein Sci 2019; 28: 1387-1399.
van Mierlo G, Veenstra GJC, Vermeulen M, et al. The complexity of PRC2 subcomplexes. Trends Cell Biol 2019; 29: 660-671.
Lindebo Holm T, Poulsen SS, Markholst H, et al. Pharmacological evaluation of the SCID T cell transfer model of colitis: as a model of Crohn's disease. Int J Inflam 2012; 2012: 412178.
Schreiber S, Heinig T, Thiele HG, et al. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995; 108: 1434-1444.
Szkaradkiewicz A, Marciniak R, Chudzicka-Strugala I, et al. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Arch Immunol Ther Exp (Warsz) 2009; 57: 291-294.
Zhu L, Shi T, Zhong C, et al. IL-10 and IL-10 receptor mutations in very early onset inflammatory bowel disease. Gastroenterology Res 2017; 10: 65-69.
Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118: 534-544.
Leung JM, Davenport M, Wolff MJ, et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014; 7: 124-133.
Mizoguchi A, Yano A, Himuro H, et al. Clinical importance of IL-22 cascade in IBD. J Gastroenterol 2018; 53: 465-474.
Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004; 21: 527-538.
Czarnewski P, Das S, Parigi SM, et al. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients 2017; 9: E68.
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med 2007; 204: 1757-1764.
Esterhazy D, Loschko J, London M, et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat Immunol 2016; 17: 545-555.
Aarts-Riemens T, Emmelot ME, Verdonck LF, et al. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4+CD25− cells. Eur J Immunol 2008; 38: 1381-1390.
Merkenschlager M, von Boehmer H. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J Exp Med 2010; 207: 1347-1350.
Gonzalez JM, Navarro-Puche A, Casar B, et al. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 2008; 183: 653-666.
Dreuillet C, Tillit J, Kress M, et al. In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res 2002; 30: 4634-4642.
Lloyd DJ, Trembath RC, Shackleton S. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 2002; 11: 769-777.
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13: 668-677.
Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut 2009; 58: 1152-1167.
Vanhove W, Nys K, Vermeire S. Therapeutic innovations in inflammatory bowel diseases. Clin Pharmacol Ther 2016; 99: 49-58.
Young CE, Boyle FM, Mutch AJ. Are care plans suitable for the management of multiple conditions? J Comorb 2016; 6: 103-113.
Laukens D, Brinkman BM, Raes J, et al. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 2016; 40: 117-132.
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol 2012; 3: 51.
Curotto de Lafaille MA, Lino AC, Kutchukhidze N, et al. CD25− T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 2004; 173: 7259-7268.
Ronchetti S, Ricci E, Petrillo MG, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015: 171520.
Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol 2006; 177: 5852-5860.
Okumura K, Nakamachi K, Hosoe Y, et al. Identification of a novel retinoic acid-responsive element within the lamin A/C promoter. Biochem Biophys Res Commun 2000; 269: 197-202.
Olins AL, Herrmann H, Lichter P, et al. Nuclear envelope and chromatin compositional differences comparing undifferentiated and retinoic acid- and phorbol ester-treated HL-60 cells. Exp Cell Res 2001; 268: 115-127.
Shin JW, Spinler KR, Swift J, et al. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A 2013; 110: 18892-18897.
Pino-Lagos K, Benson MJ, Noelle RJ. Retinoic acid in the immune system. Ann N Y Acad Sci 2008; 1143: 170-187.
Kim CH. Host and microbial factors in regulation of T cells in the intestine. Front Immunol 2013; 4: 141.
Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204: 1775-1785.
Mucida D, Pino-Lagos K, Kim G, et al. Retinoic acid can directly promote TGF-beta-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 2009; 30: 471-472; author reply 472-473.
Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007; 204: 1765-1774.
Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317: 256-260.
Bai A, Lu N, Guo Y, et al. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis. J Leukoc Biol 2009; 86: 959-969.
David M, Hodak E, Lowe NJ. Adverse effects of retinoids. Med Toxicol Adverse Drug Exp 1988; 3: 273-288.
Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011; 5: 185-210.
Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 1999; 147: 913-920.
Kim Y, Zheng X, Zheng Y. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res 2013; 23: 1420-1423.
Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483: 598-602.
Zhou L, Lopes JE, Chong MM, et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 2008; 453: 236-240.
Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10: 452-459.
Wigler M, Pellicer A, Silverstein S, et al. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 1978; 14: 725-731.