Lamin A/C deficiency in CD4


Journal

The Journal of pathology
ISSN: 1096-9896
Titre abrégé: J Pathol
Pays: England
ID NLM: 0204634

Informations de publication

Date de publication:
12 2019
Historique:
received: 16 02 2019
revised: 15 07 2019
accepted: 29 07 2019
pubmed: 3 8 2019
medline: 21 4 2020
entrez: 3 8 2019
Statut: ppublish

Résumé

The mechanisms by which lamin A/C in CD4

Identifiants

pubmed: 31372995
doi: 10.1002/path.5332
doi:

Substances chimiques

Forkhead Transcription Factors 0
Foxp3 protein, mouse 0
Homeodomain Proteins 0
Lamin Type A 0
Lmna protein, mouse 0
T-Box Domain Proteins 0
T-box transcription factor TBX21 0
RAG-1 protein 128559-51-3
Tretinoin 5688UTC01R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

509-522

Informations de copyright

© 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Références

Dechat T, Adam SA, Taimen P, et al. Nuclear lamins. Cold Spring Harb Perspect Biol 2010; 2: a000547.
Moir RD, Yoon M, Khuon S, et al. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151: 1155-1168.
Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res 2007; 313: 2167-2179.
Andres V, Gonzalez JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 2009; 187: 945-957.
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28: 445-489.
Tai Y, Wang Q, Korner H, et al. Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases. Front Pharmacol 2018; 9: 642.
Davis SJ, van der Merwe PA. The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 2006; 7: 803-809.
Gonzalez-Granado JM, Silvestre-Roig C, Rocha-Perugini V, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7: ra37.
Nakayama T, Yamashita M. The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol 2010; 22: 303-309.
Luckheeram RV, Zhou R, Verma AD, et al. CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135.
Toribio-Fernandez R, Zorita V, Rocha-Perugini V, et al. Lamin A/C augments Th1 differentiation and response against vaccinia virus and Leishmania major. Cell Death Dis 2018; 9: 9.
Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014; 40: 569-581.
Li B, Zheng SG. How regulatory T cells sense and adapt to inflammation. Cell Mol Immunol 2015; 12: 519-520.
Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nat Med 2002; 8: 567-573.
Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 2006; 212: 256-271.
Morrissey PJ, Charrier K, Braddy S, et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178: 237-244.
Powrie F, Leach MW, Mauze S, et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461-1471.
Niessner M, Volk BA. Phenotypic and immunoregulatory analysis of intestinal T-cells in patients with inflammatory bowel disease: evaluation of an in vitro model. Eur J Clin Invest 1995; 25: 155-164.
Kosiewicz MM, Nast CC, Krishnan A, et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J Clin Invest 2001; 107: 695-702.
Kang SG, Piniecki RJ, Hogenesch H, et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology 2007; 132: 966-981.
Gomez-Serrano M, Camafeita E, Garcia-Santos E, et al. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Sci Rep 2016; 6: 25756.
Trevisan-Herraz M, Bagwan N, Garcia-Marques F, et al. SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments. Bioinformatics 2019; 35: 1594-1596.
Garcia-Marques F, Trevisan-Herraz M, Martinez-Martinez S, et al. A novel systems-biology algorithm for the analysis of coordinated protein responses using quantitative proteomics. Mol Cell Proteomics 2016; 15: 1740-1760.
Oldenburg AR, Collas P. Mapping nuclear lamin-genome interactions by chromatin immunoprecipitation of nuclear lamins. Methods Mol Biol 2016; 1411: 315-324.
Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2013; 2: e60.
Markiewicz E, Dechat T, Foisner R, et al. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13: 4401-4413.
Morinobu A, Kanno Y, O'Shea JJ. Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression. J Biol Chem 2004; 279: 40640-40646.
Lund E, Collas P. Nuclear lamins: making contacts with promoters. Nucleus 2013; 4: 424-430.
Ronningen T, Shah A, Oldenburg AR, et al. Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Res 2015; 25: 1825-1835.
Kouznetsova VL, Tchekanov A, Li X, et al. Polycomb repressive 2 complex - molecular mechanisms of function. Protein Sci 2019; 28: 1387-1399.
van Mierlo G, Veenstra GJC, Vermeulen M, et al. The complexity of PRC2 subcomplexes. Trends Cell Biol 2019; 29: 660-671.
Lindebo Holm T, Poulsen SS, Markholst H, et al. Pharmacological evaluation of the SCID T cell transfer model of colitis: as a model of Crohn's disease. Int J Inflam 2012; 2012: 412178.
Schreiber S, Heinig T, Thiele HG, et al. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995; 108: 1434-1444.
Szkaradkiewicz A, Marciniak R, Chudzicka-Strugala I, et al. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Arch Immunol Ther Exp (Warsz) 2009; 57: 291-294.
Zhu L, Shi T, Zhong C, et al. IL-10 and IL-10 receptor mutations in very early onset inflammatory bowel disease. Gastroenterology Res 2017; 10: 65-69.
Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118: 534-544.
Leung JM, Davenport M, Wolff MJ, et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014; 7: 124-133.
Mizoguchi A, Yano A, Himuro H, et al. Clinical importance of IL-22 cascade in IBD. J Gastroenterol 2018; 53: 465-474.
Iwata M, Hirakiyama A, Eshima Y, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004; 21: 527-538.
Czarnewski P, Das S, Parigi SM, et al. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients 2017; 9: E68.
Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med 2007; 204: 1757-1764.
Esterhazy D, Loschko J, London M, et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat Immunol 2016; 17: 545-555.
Aarts-Riemens T, Emmelot ME, Verdonck LF, et al. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4+CD25− cells. Eur J Immunol 2008; 38: 1381-1390.
Merkenschlager M, von Boehmer H. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J Exp Med 2010; 207: 1347-1350.
Gonzalez JM, Navarro-Puche A, Casar B, et al. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 2008; 183: 653-666.
Dreuillet C, Tillit J, Kress M, et al. In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res 2002; 30: 4634-4642.
Lloyd DJ, Trembath RC, Shackleton S. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 2002; 11: 769-777.
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13: 668-677.
Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut 2009; 58: 1152-1167.
Vanhove W, Nys K, Vermeire S. Therapeutic innovations in inflammatory bowel diseases. Clin Pharmacol Ther 2016; 99: 49-58.
Young CE, Boyle FM, Mutch AJ. Are care plans suitable for the management of multiple conditions? J Comorb 2016; 6: 103-113.
Laukens D, Brinkman BM, Raes J, et al. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 2016; 40: 117-132.
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol 2012; 3: 51.
Curotto de Lafaille MA, Lino AC, Kutchukhidze N, et al. CD25− T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 2004; 173: 7259-7268.
Ronchetti S, Ricci E, Petrillo MG, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015: 171520.
Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol 2006; 177: 5852-5860.
Okumura K, Nakamachi K, Hosoe Y, et al. Identification of a novel retinoic acid-responsive element within the lamin A/C promoter. Biochem Biophys Res Commun 2000; 269: 197-202.
Olins AL, Herrmann H, Lichter P, et al. Nuclear envelope and chromatin compositional differences comparing undifferentiated and retinoic acid- and phorbol ester-treated HL-60 cells. Exp Cell Res 2001; 268: 115-127.
Shin JW, Spinler KR, Swift J, et al. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A 2013; 110: 18892-18897.
Pino-Lagos K, Benson MJ, Noelle RJ. Retinoic acid in the immune system. Ann N Y Acad Sci 2008; 1143: 170-187.
Kim CH. Host and microbial factors in regulation of T cells in the intestine. Front Immunol 2013; 4: 141.
Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204: 1775-1785.
Mucida D, Pino-Lagos K, Kim G, et al. Retinoic acid can directly promote TGF-beta-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 2009; 30: 471-472; author reply 472-473.
Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007; 204: 1765-1774.
Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317: 256-260.
Bai A, Lu N, Guo Y, et al. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis. J Leukoc Biol 2009; 86: 959-969.
David M, Hodak E, Lowe NJ. Adverse effects of retinoids. Med Toxicol Adverse Drug Exp 1988; 3: 273-288.
Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011; 5: 185-210.
Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 1999; 147: 913-920.
Kim Y, Zheng X, Zheng Y. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res 2013; 23: 1420-1423.
Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483: 598-602.
Zhou L, Lopes JE, Chong MM, et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 2008; 453: 236-240.
Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10: 452-459.
Wigler M, Pellicer A, Silverstein S, et al. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 1978; 14: 725-731.

Auteurs

Raquel Toribio-Fernández (R)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.

Beatriz Herrero-Fernandez (B)

Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.

Virginia Zorita (V)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.

Juan A López (JA)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
CIBER de Enfermedades Cardiovasculares, Madrid, Spain.

Jesús Vázquez (J)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
CIBER de Enfermedades Cardiovasculares, Madrid, Spain.

Gabriel Criado (G)

Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.

Jose L Pablos (JL)

Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.

Philippe Collas (P)

Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Francisco Sánchez-Madrid (F)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS Princesa), Madrid, Spain.

Vicente Andrés (V)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
CIBER de Enfermedades Cardiovasculares, Madrid, Spain.

Jose M Gonzalez-Granado (JM)

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.
CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH