Functional reprogramming of regulatory T cells in the absence of Foxp3.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
09 2019
Historique:
received: 13 12 2017
accepted: 06 06 2019
pubmed: 7 8 2019
medline: 20 11 2019
entrez: 7 8 2019
Statut: ppublish

Résumé

Regulatory T cells (T

Identifiants

pubmed: 31384057
doi: 10.1038/s41590-019-0442-x
pii: 10.1038/s41590-019-0442-x
pmc: PMC6707855
mid: NIHMS1531277
doi:

Substances chimiques

FOXP3 protein, human 0
Forkhead Transcription Factors 0
Rapamycin-Insensitive Companion of mTOR Protein 0
rictor protein, mouse 0
Mechanistic Target of Rapamycin Complex 2 EC 2.7.11.1

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1208-1219

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI102888
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI085090
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI065617
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016042
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK034854
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).
doi: 10.1146/annurev.immunol.25.022106.141623
Nutsch, K. M. & Hsieh, C. S. T cell tolerance and immunity to commensal bacteria. Curr. Opin. Immunol. 24, 385–391 (2012).
doi: 10.1016/j.coi.2012.04.009
Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).
doi: 10.1038/ni1445
Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).
doi: 10.1038/nature05543
Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for T
doi: 10.1016/j.immuni.2012.09.010
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8
doi: 10.1038/nri3307
Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).
doi: 10.1111/j.1600-065X.2011.01018.x
Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).
doi: 10.1016/j.cell.2017.04.004
Beier, U. H. et al. Essential role of mitochondrial energy metabolism in Foxp3
doi: 10.1096/fj.14-268409
Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4
doi: 10.1172/JCI76012
Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4
doi: 10.4049/jimmunol.1003613
Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and T
doi: 10.1084/jem.20110278
Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).
doi: 10.1016/j.cmet.2016.12.018
Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance T
doi: 10.1038/ni.3577
Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).
doi: 10.1016/j.it.2014.11.005
Chapman, N. M. & Chi, H. mTOR links environmental signals to T cell fate decisions. Front. Immunol. 5, 686 (2014).
pubmed: 25653651
Valmori, D. et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4
doi: 10.4049/jimmunol.177.2.944
Liu, C., Chapman, N. M., Karmaus, P. W., Zeng, H. & Chi, H. mTOR and metabolic regulation of conventional and regulatory T cells. J. Leukoc. Biol. 97, 837–847 (2015).
doi: 10.1189/jlb.2RI0814-408R
Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).
doi: 10.1016/j.immuni.2009.04.014
Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T
doi: 10.1038/nature12297
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).
doi: 10.1126/science.1106148
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
doi: 10.1016/j.cell.2017.04.001
Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011).
doi: 10.4049/jimmunol.1002126
Shrestha, S. et al. T
doi: 10.1038/ni.3076
Williams, B. L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-gamma1 and ras activation. EMBO J. 18, 1832–1844 (1999).
doi: 10.1093/emboj/18.7.1832
Lin, W. et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin. Immunol. 116, 1106–1115 (2005).
doi: 10.1016/j.jaci.2005.08.046
Leach, M. W., Bean, A. G., Mauze, S., Coffman, R. L. & Powrie, F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RB
pubmed: 8623920 pmcid: 1861555
Charbonnier, L. M., Wang, S., Georgiev, P., Sefik, E. & Chatila, T. A. Control of peripheral tolerance by regulatory T cell-intrinsic notch signaling. Nat. Immunol. 16, 1162–1173 (2015).
doi: 10.1038/ni.3288
Wan, Y. Y. & Flavell, R. A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA 102, 5126–5131 (2005).
doi: 10.1073/pnas.0501701102
Gan, X. et al. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat. Cell Biol. 14, 686–696 (2012).
doi: 10.1038/ncb2507
Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014).
doi: 10.1084/jem.20131548
Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).
doi: 10.1074/jbc.M213069200
Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T
doi: 10.1038/nature11581
Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).
doi: 10.1016/j.immuni.2010.12.002
Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).
doi: 10.1016/j.cmet.2012.03.015
Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).
doi: 10.1038/nature16498
Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).
doi: 10.1126/science.1242454
Huynh, A. et al. Control of PI(3) kinase in T
doi: 10.1038/ni.3077
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).
doi: 10.1016/j.immuni.2011.09.021
Longo, N., Frigeni, M. & Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 1863, 2422–2435 (2016).
doi: 10.1016/j.bbamcr.2016.01.023
De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).
doi: 10.1016/j.cell.2013.06.037
Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).
doi: 10.1172/JCI11679
Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).
doi: 10.1172/JCI25112
Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).
doi: 10.1073/pnas.0509484103
Bacchetta, R., Barzaghi, F. & Roncarolo, M. G. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. NY Acad. Sci. 1417, 5–22 (2018).
doi: 10.1111/nyas.13011
Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4
doi: 10.1084/jem.20060772
Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).
doi: 10.1084/jem.20060468
Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).
doi: 10.1016/j.celrep.2015.12.095
Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283.e9 (2017).
doi: 10.1016/j.immuni.2017.07.008
Bin Dhuban, K. et al. Suppression by human FOXP3
doi: 10.1126/sciimmunol.aai9297
Bennett, C. L. et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435–439 (2001).
doi: 10.1007/s002510100358
Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).
doi: 10.1371/journal.pone.0000162
Rivas, M. N. et al. MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice. J. Clin. Invest. 122, 1933–1947 (2012).
doi: 10.1172/JCI40591
Schmitt, E. G. et al. IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy. J. Immunol. 189, 5638–5648 (2012).
doi: 10.4049/jimmunol.1200936

Auteurs

Louis-Marie Charbonnier (LM)

Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

Ye Cui (Y)

Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

Emmanuel Stephen-Victor (E)

Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

Hani Harb (H)

Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

David Lopez (D)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Jack J Bleesing (JJ)

Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Maria I Garcia-Lloret (MI)

Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Karin Chen (K)

Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.

Ahmet Ozen (A)

Division of Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.

Peter Carmeliet (P)

Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.

Ming O Li (MO)

Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Matteo Pellegrini (M)

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.

Talal A Chatila (TA)

Division of Immunology, Boston Children's Hospital, Boston, MA, USA. talal.chatila@childrens.harvard.edu.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA. talal.chatila@childrens.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH