Functional reprogramming of regulatory T cells in the absence of Foxp3.
Animals
Cells, Cultured
Cellular Reprogramming
/ immunology
Female
Forkhead Transcription Factors
/ genetics
Gene Expression Regulation
Glycolysis
/ physiology
Humans
Male
Mechanistic Target of Rapamycin Complex 2
/ antagonists & inhibitors
Mice
Mice, Inbred C57BL
Mice, Knockout
Oxidative Phosphorylation
Rapamycin-Insensitive Companion of mTOR Protein
/ genetics
Signal Transduction
T-Lymphocytes, Regulatory
/ cytology
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
13
12
2017
accepted:
06
06
2019
pubmed:
7
8
2019
medline:
20
11
2019
entrez:
7
8
2019
Statut:
ppublish
Résumé
Regulatory T cells (T
Identifiants
pubmed: 31384057
doi: 10.1038/s41590-019-0442-x
pii: 10.1038/s41590-019-0442-x
pmc: PMC6707855
mid: NIHMS1531277
doi:
Substances chimiques
FOXP3 protein, human
0
Forkhead Transcription Factors
0
Rapamycin-Insensitive Companion of mTOR Protein
0
rictor protein, mouse
0
Mechanistic Target of Rapamycin Complex 2
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1208-1219Subventions
Organisme : NIAID NIH HHS
ID : R01 AI102888
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI085090
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI065617
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016042
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK034854
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).
doi: 10.1146/annurev.immunol.25.022106.141623
Nutsch, K. M. & Hsieh, C. S. T cell tolerance and immunity to commensal bacteria. Curr. Opin. Immunol. 24, 385–391 (2012).
doi: 10.1016/j.coi.2012.04.009
Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).
doi: 10.1038/ni1445
Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).
doi: 10.1038/nature05543
Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for T
doi: 10.1016/j.immuni.2012.09.010
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8
doi: 10.1038/nri3307
Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).
doi: 10.1111/j.1600-065X.2011.01018.x
Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).
doi: 10.1016/j.cell.2017.04.004
Beier, U. H. et al. Essential role of mitochondrial energy metabolism in Foxp3
doi: 10.1096/fj.14-268409
Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4
doi: 10.1172/JCI76012
Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4
doi: 10.4049/jimmunol.1003613
Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and T
doi: 10.1084/jem.20110278
Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).
doi: 10.1016/j.cmet.2016.12.018
Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance T
doi: 10.1038/ni.3577
Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).
doi: 10.1016/j.it.2014.11.005
Chapman, N. M. & Chi, H. mTOR links environmental signals to T cell fate decisions. Front. Immunol. 5, 686 (2014).
pubmed: 25653651
Valmori, D. et al. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4
doi: 10.4049/jimmunol.177.2.944
Liu, C., Chapman, N. M., Karmaus, P. W., Zeng, H. & Chi, H. mTOR and metabolic regulation of conventional and regulatory T cells. J. Leukoc. Biol. 97, 837–847 (2015).
doi: 10.1189/jlb.2RI0814-408R
Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).
doi: 10.1016/j.immuni.2009.04.014
Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T
doi: 10.1038/nature12297
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).
doi: 10.1126/science.1106148
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
doi: 10.1016/j.cell.2017.04.001
Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011).
doi: 10.4049/jimmunol.1002126
Shrestha, S. et al. T
doi: 10.1038/ni.3076
Williams, B. L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-gamma1 and ras activation. EMBO J. 18, 1832–1844 (1999).
doi: 10.1093/emboj/18.7.1832
Lin, W. et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin. Immunol. 116, 1106–1115 (2005).
doi: 10.1016/j.jaci.2005.08.046
Leach, M. W., Bean, A. G., Mauze, S., Coffman, R. L. & Powrie, F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RB
pubmed: 8623920
pmcid: 1861555
Charbonnier, L. M., Wang, S., Georgiev, P., Sefik, E. & Chatila, T. A. Control of peripheral tolerance by regulatory T cell-intrinsic notch signaling. Nat. Immunol. 16, 1162–1173 (2015).
doi: 10.1038/ni.3288
Wan, Y. Y. & Flavell, R. A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl Acad. Sci. USA 102, 5126–5131 (2005).
doi: 10.1073/pnas.0501701102
Gan, X. et al. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat. Cell Biol. 14, 686–696 (2012).
doi: 10.1038/ncb2507
Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014).
doi: 10.1084/jem.20131548
Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).
doi: 10.1074/jbc.M213069200
Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T
doi: 10.1038/nature11581
Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).
doi: 10.1016/j.immuni.2010.12.002
Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).
doi: 10.1016/j.cmet.2012.03.015
Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).
doi: 10.1038/nature16498
Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).
doi: 10.1126/science.1242454
Huynh, A. et al. Control of PI(3) kinase in T
doi: 10.1038/ni.3077
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).
doi: 10.1016/j.immuni.2011.09.021
Longo, N., Frigeni, M. & Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 1863, 2422–2435 (2016).
doi: 10.1016/j.bbamcr.2016.01.023
De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).
doi: 10.1016/j.cell.2013.06.037
Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).
doi: 10.1172/JCI11679
Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).
doi: 10.1172/JCI25112
Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).
doi: 10.1073/pnas.0509484103
Bacchetta, R., Barzaghi, F. & Roncarolo, M. G. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. NY Acad. Sci. 1417, 5–22 (2018).
doi: 10.1111/nyas.13011
Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4
doi: 10.1084/jem.20060772
Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).
doi: 10.1084/jem.20060468
Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).
doi: 10.1016/j.celrep.2015.12.095
Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283.e9 (2017).
doi: 10.1016/j.immuni.2017.07.008
Bin Dhuban, K. et al. Suppression by human FOXP3
doi: 10.1126/sciimmunol.aai9297
Bennett, C. L. et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435–439 (2001).
doi: 10.1007/s002510100358
Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).
doi: 10.1371/journal.pone.0000162
Rivas, M. N. et al. MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice. J. Clin. Invest. 122, 1933–1947 (2012).
doi: 10.1172/JCI40591
Schmitt, E. G. et al. IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy. J. Immunol. 189, 5638–5648 (2012).
doi: 10.4049/jimmunol.1200936