Chromosomics: Bridging the Gap between Genomes and Chromosomes.
centromere
chromosome rearrangements
cytogenetics
evolution
genome biology
genome plasticity
sex chromosomes
Journal
Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097
Informations de publication
Date de publication:
20 08 2019
20 08 2019
Historique:
received:
18
07
2019
revised:
10
08
2019
accepted:
13
08
2019
entrez:
23
8
2019
pubmed:
23
8
2019
medline:
10
1
2020
Statut:
epublish
Résumé
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Identifiants
pubmed: 31434289
pii: genes10080627
doi: 10.3390/genes10080627
pmc: PMC6723020
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Références
Nature. 1999 Dec 2;402(6761):489-95
pubmed: 10591208
Nature. 2001 Feb 15;409(6822):860-921
pubmed: 11237011
Nature. 2001 Feb 15;409(6822):934-41
pubmed: 11237014
Trends Ecol Evol. 2001 Jul 1;16(7):351-358
pubmed: 11403867
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12084-8
pubmed: 11593019
Genetics. 2002 Nov;162(3):1355-66
pubmed: 12454079
Nature. 2003 Jun 12;423(6941):715-9
pubmed: 12802326
Nature. 2003 Jun 19;423(6942):825-37
pubmed: 12815422
J Natl Cancer Inst. 1960 Jul;25:85-109
pubmed: 14427847
Genome Biol. 2004;5(4):R23
pubmed: 15059256
Nature. 2004 May 27;429(6990):369-74
pubmed: 15164053
Nature. 2004 Oct 21;431(7011):931-45
pubmed: 15496913
Science. 2005 Jul 22;309(5734):613-7
pubmed: 16040707
Cytogenet Genome Res. 2005;111(2):101-6
pubmed: 16103649
Genome Res. 2006 Mar;16(3):306-10
pubmed: 16510895
Nature. 1990 Jul 19;346(6281):240-4
pubmed: 1695712
Genome Biol. 2006;7(12):R115
pubmed: 17156441
Nat Rev Genet. 2007 Jan;8(1):47-57
pubmed: 17173057
Eur J Histochem. 2006 Oct-Dec;50(4):223-72
pubmed: 17213034
Chromosome Res. 2007;15(3):361-70
pubmed: 17406991
Nature. 2007 May 10;447(7141):167-77
pubmed: 17495919
Nat Protoc. 2007;2(9):2233-44
pubmed: 17853881
Genome Res. 2007 Nov;17(11):1547-9
pubmed: 17975171
Nature. 2008 May 8;453(7192):175-83
pubmed: 18464734
PLoS Genet. 2008 Jul 25;4(7):e1000140
pubmed: 18654631
Genome Res. 2009 May;19(5):770-7
pubmed: 19342477
BMC Genomics. 2009 Jul 24;10:335
pubmed: 19630943
Nat Rev Genet. 2009 Oct;10(10):691-703
pubmed: 19763152
Nature. 2009 Nov 5;462(7269):58-64
pubmed: 19890323
Nature. 2010 Jan 28;463(7280):536-9
pubmed: 20072128
Nature. 1991 May 9;351(6322):117-21
pubmed: 2030730
BMC Bioinformatics. 2010 Jul 15;11:378
pubmed: 20633259
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15826-31
pubmed: 20798037
Cell. 2012 Feb 17;148(4):780-91
pubmed: 22341448
PLoS Biol. 2012;10(5):e1001328
pubmed: 22615540
Nature. 2012 May 30;485(7400):635-41
pubmed: 22660326
Annu Rev Cell Dev Biol. 2012;28:163-87
pubmed: 22905954
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Mol Biol Evol. 2013 Apr;30(4):853-64
pubmed: 23204393
Genome Biol Evol. 2013;5(1):255-66
pubmed: 23315381
BMC Genomics. 2013 May 28;14:357
pubmed: 23714049
Genome Res. 2013 Sep;23(9):1474-85
pubmed: 23800453
PLoS Genet. 2013;9(7):e1003635
pubmed: 23874231
Chromosome Res. 2013 Aug;21(5):491-505
pubmed: 23949445
Science. 2013 Nov 22;342(6161):948-53
pubmed: 24200812
Genome Res. 2014 Apr;24(4):604-15
pubmed: 24487721
G3 (Bethesda). 2014 May 30;4(8):1395-405
pubmed: 24879607
BMC Genomics. 2014 Jun 26;15:530
pubmed: 24969235
Chromosoma. 2014 Dec;123(6):529-44
pubmed: 25053180
Genes Dev. 2014 Dec 15;28(24):2778-91
pubmed: 25512564
Bioessays. 2015 May;37(5):479-88
pubmed: 25739389
FEBS Lett. 2015 Oct 7;589(20 Pt A):3023-30
pubmed: 25896023
Nat Commun. 2015 May 12;6:7147
pubmed: 25962338
Sci Rep. 2015 Jul 01;5:11916
pubmed: 26132639
Gigascience. 2015 Sep 28;4:45
pubmed: 26421146
Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89
pubmed: 26542840
Genome Res. 2016 Jan;26(1):130-9
pubmed: 26560630
Nat Biotechnol. 2016 Mar;34(3):303-11
pubmed: 26829319
Genome Res. 2016 Mar;26(3):342-50
pubmed: 26848124
Genome Res. 2016 Apr;26(4):530-40
pubmed: 26934921
Heredity (Edinb). 2016 Jun;116(6):516-22
pubmed: 26980343
Nat Methods. 2016 Jul;13(7):587-90
pubmed: 27159086
BMC Genomics. 2016 Jun 10;17:447
pubmed: 27286959
Genes Dev. 2016 Jun 15;30(12):1357-82
pubmed: 27340173
Genes Dev. 2016 Jul 15;30(14):1598-610
pubmed: 27474438
BMC Genomics. 2016 Aug 11;17(1):618
pubmed: 27516089
Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279
pubmed: 27646134
Genome Biol. 2016 Oct 19;17(1):215
pubmed: 27760553
Genome Res. 2017 May;27(5):875-884
pubmed: 27903645
Methods Mol Biol. 2017;1551:161-169
pubmed: 28138846
Nat Methods. 2017 Jan 31;14(2):125-134
pubmed: 28139673
Genome Biol. 2017 Feb 3;18(1):26
pubmed: 28159004
Genome Biol Evol. 2016 Dec 1;8(12):3703-3717
pubmed: 28175287
Sci Rep. 2017 Feb 16;7:42213
pubmed: 28205594
Trends Genet. 2017 Apr;33(4):266-282
pubmed: 28236503
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3491-3496
pubmed: 28242695
Science. 2017 Apr 7;356(6333):92-95
pubmed: 28336562
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5379-E5388
pubmed: 28630326
Brief Bioinform. 2018 Nov 27;19(6):1256-1272
pubmed: 28637243
Prog Mol Subcell Biol. 2017;56:285-304
pubmed: 28840242
Nature. 2017 Sep 13;549(7671):219-226
pubmed: 28905911
Genome Biol Evol. 2017 Sep 1;9(9):2461-2476
pubmed: 28961969
Mol Biol Evol. 2018 Feb 1;35(2):431-439
pubmed: 29161408
Science. 2018 Feb 9;359(6376):
pubmed: 29348367
Nat Biotechnol. 2018 Apr;36(4):321-323
pubmed: 29553574
Nature. 1985 Jun 13-19;315(6020):550-4
pubmed: 2989692
PLoS Genet. 2018 Dec 26;14(12):e1007872
pubmed: 30586358
Nat Commun. 2019 Jan 2;10(1):4
pubmed: 30602775
Nat Struct Mol Biol. 2019 Mar;26(3):164-174
pubmed: 30778236
Nat Struct Mol Biol. 2019 Mar;26(3):175-184
pubmed: 30778237
Cell Rep. 2019 Jul 9;28(2):352-367.e9
pubmed: 31291573
Cell. 1987 Dec 24;51(6):1091-104
pubmed: 3690661
Nature. 1973 Jun 1;243(5405):290-3
pubmed: 4126434
Bioessays. 1995 Apr;17(4):311-20
pubmed: 7741724
Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1927-31
pubmed: 8127908
Chromosoma. 1998 May;107(2):136-40
pubmed: 9601982