In Silico Design of MDM2-Targeting Peptides from a Naturally Occurring Constrained Peptide.
In silico design
MDM2
activity assays
p53
peptide toxin
Journal
ChemMedChem
ISSN: 1860-7187
Titre abrégé: ChemMedChem
Pays: Germany
ID NLM: 101259013
Informations de publication
Date de publication:
04 10 2019
04 10 2019
Historique:
received:
18
06
2019
revised:
20
08
2019
pubmed:
25
8
2019
medline:
23
9
2020
entrez:
25
8
2019
Statut:
ppublish
Résumé
Naturally occurring constrained peptides are frequently used as scaffolds for bioactive peptide grating due to their high stability. Here, we used in silico methods to design several constrained peptides comprising a scorpion toxin scaffold, a MDM2 binding epitope, and a cluster of positively charged residues. The designed peptides displayed varied binding affinity to MDM2 despite differing by only one or two residues. One of the peptides, SC426, had nanomolar binding affinity (K
Identifiants
pubmed: 31444979
doi: 10.1002/cmdc.201900366
doi:
Substances chimiques
Antineoplastic Agents
0
Imidazoles
0
Peptides
0
Piperazines
0
nutlin 3
53IA0V845C
Proto-Oncogene Proteins c-mdm2
EC 2.3.2.27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1710-1716Subventions
Organisme : Fundamental Research Funds for the Central Universities
ID : 201762011 and 201941012
Pays : International
Organisme : National Laboratory Director Fund
ID : QNLM201709
Pays : International
Organisme : Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)
ID : 2018SDKJ0402
Pays : International
Organisme : DJC is an Australian Research Council (ARC) Australian Laureate Fellow
ID : FL150100146
Pays : International
Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, R. W. Craig, Cancer Res. 1991, 51, 6304-6311;
A. J. Levine, W. Hu, Z. Feng, Cell Death Differ. 2006, 13, 1027-1036.
V. Pant, G. Lozano, Genes Dev. 2014, 28, 1739-1751;
G. Asher, J. Lotem, L. Sachs, C. Kahana, Y. Shaul, Proc. Natl. Acad. Sci. USA 2002, 99, 13125-13130;
D. W. Meek, C. W. Anderson, Cold Spring Harbor Perspect. Biol. 2009, 1, a000950.
P. Stehmeier, S. Muller, DNA Repair 2009, 8, 491-498;
M. H. Kubbutat, S. N. Jones, K. H. Vousden, Nature 1997, 387, 299-303;
Y. Haupt, R. Maya, A. Kazaz, M. Oren, Nature 1997, 387, 296-299.
J. Momand, G. P. Zambetti, D. C. Olson, D. George, A. J. Levine, Cell 1992, 69, 1237-1245.
J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, B. Vogelstein, Nature 1992, 358, 80-83.
J. Momand, G. P. Zambetti, J. Cell. Biochem. 1997, 64, 343-352.
C. P. Martins, L. Brown-Swigart, G. I. Evan, Cell 2006, 127, 1323-1334;
X. Wen, Z. Lars, M. Cornelius, R. A. Dickins, H. Eva, K. Valery, C. C. Carlos, S. W. Lowe, Nature 2007, 445, 656-660;
A. Ventura, D. G. Kirsch, M. E. McLaughlin, D. A. Tuveson, J. Grimm, L. Lintault, J. Newman, E. E. Reczek, R. Weissleder, T. Jacks, Nature 2007, 445, 661-665.
C. J. Brown, S. Lain, C. S. Verma, A. R. Fersht, D. P. Lane, Nat. Rev. Cancer 2009, 9, 862-873.
L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, E. A. Liu, Science 2004, 303, 844-848.
A. Burgess, K. M. Chia, S. Haupt, D. Thomas, Y. Haupt, E. Lim, Front. Oncol. 2016, 6, 7-13.
C. Tovar, B. Graves, K. Packman, Z. Filipovic, B. Higgins, M. Xia, C. Tardell, R. Garrido, E. Lee, K. Kolinsky, K. H. To, M. Linn, F. Podlaski, P. Wovkulich, B. Vu, L. T. Vassilev, Cancer Res. 2013, 73, 2587-2597.
D. Sun, Z. Li, Y. Rew, M. Gribble, M. D. Bartberger, H. P. Beck, J. Canon, A. Chen, X. Chen, D. Chow, J. Deignan, J. Duquette, J. Eksterowicz, B. Fisher, B. M. Fox, J. Fu, A. Z. Gonzalez, F. Gonzalez-Lopez De Turiso, J. B. Houze, X. Huang, M. Jiang, L. Jin, F. Kayser, J. J. Liu, M. C. Lo, A. M. Long, B. Lucas, L. R. McGee, J. McIntosh, J. Mihalic, J. D. Oliner, T. Osgood, M. L. Peterson, P. Roveto, A. Y. Saiki, P. Shaffer, M. Toteva, Y. Wang, Y. C. Wang, S. Wortman, P. Yakowec, X. Yan, Q. Ye, D. Yu, M. Yu, X. Zhao, J. Zhou, J. Zhu, S. H. Olson, J. C. Medina, J. Med. Chem. 2014, 57, 1454-1472.
P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, N. P. Pavletich, Science 1996, 274, 948-953.
C. K. Wang, D. J. Craik, Nat. Chem. Biol. 2018, 14, 417-427.
C. Li, M. Pazgier, M. Liu, W. Y. Lu, W. Lu, Angew. Chem. Int. Ed. 2009, 48, 8712-8715;
Angew. Chem. 2009, 121, 8868-8871;
C. Li, M. Liu, J. Monbo, G. Zou, C. Li, W. Yuan, D. Zella, W. Y. Lu, W. Lu, J. Am. Chem. Soc. 2008, 130, 13546-13548.
A. Szyk, W. Lu, C. Xu, J. Lubkowski, J. Struct. Biol. 2004, 145, 289-294.
C. Anna, G. M. Popowicz, P. Aleksandra, W. Siglinde, D. Grzegorz, T. A. Holak, Cell Cycle 2009, 8, 1176-1184.
V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, Acta Crystallogr. Sect. D 2010, 66, 12-21.
D. A. Case, D. S. Cerutti, T. Cheatham, T. Darden, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, D. Greene, N. Homeyer, S. Izadi, A. Kovalenko, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K. Merz, G. Monard, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. X. Qi, D. R. Roe, A. Roitberg, S. Sagui, C. Simmerling, W. M. Botello-Smith, J. M. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, L. Xiao, D. M. York, P. A. Kollman, AMBER 2017.
J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, J. Chem. Theory Comput. 2015, 11, 3696-3713.
S. Miyamoto, P. A. Kollman, J. Comput. Chem. 1992, 13, 952-962.
T. Darden, D. York, L. Pedersen, Chem. Phys. 1998, 98, 10089-10092.
R. Yu, S. N. Kompella, D. J. Adams, D. J. Craik, Q. Kaas, J. Med. Chem. 2013, 56, 3557-3567.
Y. Shen, A. Bax, J. Biomol. NMR 2013, 56, 227-241.
A. T. Brünger, P. D. Adams, L. M. Rice, Structure 1997, 5, 325-336.
B. G. Pierce, K. Wiehe, H. Hwang, B. H. Kim, T. Vreven, Z. Weng, Bioinformatics 2014, 30, 1771-1773.