Allogeneic stem cell transplantation in patients with myelofibrosis harboring the MPL mutation.
bone marrow transplantation
molecular biology of myelopoiesis
myelofibrosis with myeloid metaplasia
transplantation
Journal
European journal of haematology
ISSN: 1600-0609
Titre abrégé: Eur J Haematol
Pays: England
ID NLM: 8703985
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
20
05
2019
revised:
20
08
2019
accepted:
21
08
2019
pubmed:
26
8
2019
medline:
27
3
2020
entrez:
26
8
2019
Statut:
ppublish
Résumé
Primary and post-ET/PV myelofibrosis are myeloproliferative neoplasms harboring in most cases driving mutations in JAK2, CALR or MPL, and a variable number of additional mutations in other genes. Molecular analysis represents a powerful tool to guide prognosis and clinical management. Only about 10% of patients with myelofibrosis harbor alterations in MPL gene. No data are available about the transplantation outcome in the specific MPL-mutated group. We collected the data of 18 myelofibrosis patients(primary: 14; post-ET: 4) transplanted in 4 EBMT centers (Hamburg, Paris, Essen, and Hannover) between 2005 and 2016. Before the transplant, we explored the molecular profile by NGS and reported the frequency of mutations occurring in a panel of genes including JAK2, MPL, CALR, U2AF1, SRSF2, SF3B1, ASXL1, IDH1, IDH2, CBL, DNMT3A, TET2, EZH2, TP53, IKZF1, NRAS, KRAS, FLT3, SH2B3, and RUNX1. The 1-year transplant-related mortality was 16.5%, 5-years overall survival and 5-y relapse-free survival 83.5%. The only relapse occurred in a patient who harbored mutations in both ASXL1 and EZH2 genes. These retrospective data suggest that MPL-mutated myelofibrosis patients have a favorable outcome after allogeneic transplantation with very low rate of disease relapse (5.5%) in comparison with the available historical controls regarding myelofibrosis in all.
Substances chimiques
Receptors, Thrombopoietin
0
MPL protein, human
143641-95-6
Types de publication
Clinical Trial
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
552-557Informations de copyright
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405.
Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:1262-1271.
Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472-1477.
Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30:431-438.
Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105-111.
Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861-1869.
Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494-1500.
Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.
Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant risk model for myelofibrosis undergoing allogeneic stem cell transplantation. Blood. 2018;132:689-689.
Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703-1708.
Alchalby H, Badbaran A, Bock O, et al. Screening and monitoring of MPL W515L mutation with real-time PCR in patients with myelofibrosis undergoing allogeneic-SCT. Bone Marrow Transplant. 2010;45:1404-1407.
Bacigalupo A, Ballen K, Rizzo D, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628-1633.
Holtan SG, DeFor TE, Lazaryan A, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333-1338.
Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:5264-5270.
Scott BL, Gooley TA, Sorror ML, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood. 2012;119:2657-2664.
Gupta V, Malone AK, Hari PN, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2014;20:89-97.
Ditschkowski M, Elmaagacli AH, Trenschel R, et al. Dynamic International Prognostic Scoring System scores, pre-transplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica. 2012;97:1574-1581.
Kroger N, Panagiota V, Badbaran A, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:1095-1101.
Devlin R, Gupta V. Myelofibrosis: to transplant or not to transplant? Hematology Am Soc Hematol Educ Program. 2016;2016:543-551.