Cingulum bundle abnormalities and risk for schizophrenia.


Journal

Schizophrenia research
ISSN: 1573-2509
Titre abrégé: Schizophr Res
Pays: Netherlands
ID NLM: 8804207

Informations de publication

Date de publication:
01 2020
Historique:
received: 26 11 2018
revised: 22 07 2019
accepted: 15 08 2019
pubmed: 4 9 2019
medline: 20 1 2021
entrez: 4 9 2019
Statut: ppublish

Résumé

The cingulum bundle (CB) is a major white matter fiber tract of the limbic system that underlies cingulate cortex, passing longitudinally over the corpus callosum. The connectivity of this white matter fiber tract plays a major role in emotional expression, attention, motivation, and working memory, all of which are affected in schizophrenia. Myelin related CB abnormalities have also been implicated in schizophrenia. The purpose of this study is to determine whether or not CB abnormalities are evident in individuals at clinical high risk (CHR) for psychosis, and whether or not cognitive deficits in the domains subserved by CB are related to its structural abnormalities. Diffusion Tensor Imaging (DTI) was performed on a 3 T magnet. DT tractography was used to evaluate CB in 20 individuals meeting CHR criteria (13 males/7 females) and 23 healthy controls (12 males/11 females) group matched on age, gender, parental socioeconomic status, education, and handedness. Fractional anisotropy (FA), a measure of white matter coherence and integrity, radial diffusivity (RD), thought to reflect myelin integrity, trace, a possible marker of atrophy, and axial diffusivity (AD), thought to reflect axonal integrity, were averaged over the entire tract and used to investigate CB abnormalities in individuals at CHR for psychosis compared with healthy controls. Significant group differences were found between individuals at CHR for psychosis and controls for FA (p = 0.028), RD (p = 0.03) and trace (p = 0.031), but not for AD (p = 0.09). We did not find any significant correlations between DTI measures and clinical symptoms. These findings suggest abnormalities (possibly myelin related) in the CB in individuals at CHR for psychosis.

Sections du résumé

BACKGROUND
The cingulum bundle (CB) is a major white matter fiber tract of the limbic system that underlies cingulate cortex, passing longitudinally over the corpus callosum. The connectivity of this white matter fiber tract plays a major role in emotional expression, attention, motivation, and working memory, all of which are affected in schizophrenia. Myelin related CB abnormalities have also been implicated in schizophrenia. The purpose of this study is to determine whether or not CB abnormalities are evident in individuals at clinical high risk (CHR) for psychosis, and whether or not cognitive deficits in the domains subserved by CB are related to its structural abnormalities.
METHODS
Diffusion Tensor Imaging (DTI) was performed on a 3 T magnet. DT tractography was used to evaluate CB in 20 individuals meeting CHR criteria (13 males/7 females) and 23 healthy controls (12 males/11 females) group matched on age, gender, parental socioeconomic status, education, and handedness. Fractional anisotropy (FA), a measure of white matter coherence and integrity, radial diffusivity (RD), thought to reflect myelin integrity, trace, a possible marker of atrophy, and axial diffusivity (AD), thought to reflect axonal integrity, were averaged over the entire tract and used to investigate CB abnormalities in individuals at CHR for psychosis compared with healthy controls.
RESULTS
Significant group differences were found between individuals at CHR for psychosis and controls for FA (p = 0.028), RD (p = 0.03) and trace (p = 0.031), but not for AD (p = 0.09). We did not find any significant correlations between DTI measures and clinical symptoms.
CONCLUSION
These findings suggest abnormalities (possibly myelin related) in the CB in individuals at CHR for psychosis.

Identifiants

pubmed: 31477373
pii: S0920-9964(19)30358-5
doi: 10.1016/j.schres.2019.08.017
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

385-391

Subventions

Organisme : NIMH NIH HHS
ID : T32 MH016259
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH102377
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH050740
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH080272
Pays : United States
Organisme : NIMH NIH HHS
ID : K24 MH110807
Pays : United States

Informations de copyright

Copyright © 2019 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest All authors declare that they have no conflicts of interest.

Auteurs

Jennifer Fitzsimmons (J)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America. Electronic address: jfitzsimmons@bwh.harvard.edu.

Pedro Rosa (P)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Psychiatric Neuroimaging (LIM-21), Department & Institute of Psychiatry, Faculty of Medicine, Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Valerie J Sydnor (VJ)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Benjamin E Reid (BE)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Nikos Makris (N)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Jill M Goldstein (JM)

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America.

Raquelle I Mesholam-Gately (RI)

Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America.

Kristen Woodberry (K)

Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America.

Joanne Wojcik (J)

Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America.

Robert W McCarley (RW)

Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States of America.

Larry J Seidman (LJ)

Beth Israel Deaconess Medical Center-Massachusetts Mental Health Center, Public Psychiatry Division, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.

Martha E Shenton (ME)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Research and Development, VA Boston Healthcare System, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Marek Kubicki (M)

Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH