The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein.
IL-2-inducible T cell kinase (ITK)
LCK proto-oncogene SRC family tyrosine kinase
NMR
SH2D2A
Src homology 3 domain (SH3 domain)
T cell-specific adapter protein (TSAD)
T-cell
adaptor protein
cell signaling
immunity
nuclear magnetic resonance
protein kinase
protein phosphorylation
protein structure
protein-protein interaction
tyrosine-protein kinase
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
18 10 2019
18 10 2019
Historique:
received:
07
03
2019
revised:
22
08
2019
pubmed:
6
9
2019
medline:
23
6
2020
entrez:
6
9
2019
Statut:
ppublish
Résumé
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Identifiants
pubmed: 31484725
pii: S0021-9258(20)33788-1
doi: 10.1074/jbc.RA119.008318
pmc: PMC6802506
doi:
Substances chimiques
Adaptor Proteins, Signal Transducing
0
MAS1 protein, human
0
Proto-Oncogene Mas
0
SH2D2A protein, human
0
Protein-Tyrosine Kinases
EC 2.7.10.1
LCK protein, human
EC 2.7.10.2
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)
EC 2.7.10.2
emt protein-tyrosine kinase
EC 2.7.10.2
Banques de données
PDB
['2LMJ', '2RNA', '2YUQ']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15480-15494Subventions
Organisme : NIAID NIH HHS
ID : R01 AI043957
Pays : United States
Informations de copyright
© 2019 Andersen et al.
Références
Nature. 2012 Mar 07;483(7389):336-40
pubmed: 22398450
J Immunol. 1997 Oct 1;159(7):3220-9
pubmed: 9317120
Adv Immunol. 2007;93:145-84
pubmed: 17383541
PLoS One. 2010 Mar 18;5(3):e9761
pubmed: 20305788
J Exp Med. 1999 Dec 6;190(11):1657-68
pubmed: 10587356
Mol Cell Proteomics. 2013 May;12(5):1204-13
pubmed: 23358503
EMBO J. 2000 Dec 1;19(23):6382-91
pubmed: 11101511
J Biomol NMR. 1999 Mar;13(3):289-302
pubmed: 10212987
J Mol Biol. 1999 Apr 16;287(5):859-65
pubmed: 10222196
EMBO J. 2000 Jun 15;19(12):2889-99
pubmed: 10856234
Biochem J. 2005 Sep 15;390(Pt 3):641-53
pubmed: 16134966
J Immunol. 2000 Sep 15;165(6):2927-31
pubmed: 10975797
J Biomol NMR. 1997 Jun;9(4):359-69
pubmed: 9255942
J Biol Chem. 2008 Aug 8;283(32):21909-19
pubmed: 18541536
FEBS Lett. 2013 Apr 17;587(8):1046-52
pubmed: 23337873
EMBO J. 1999 Oct 1;18(19):5300-9
pubmed: 10508163
Curr Biol. 2002 Aug 6;12(15):1336-41
pubmed: 12176364
Biochem J. 2003 Apr 1;371(Pt 1):15-27
pubmed: 12485116
Nat Struct Mol Biol. 2006 Sep;13(9):798-805
pubmed: 16906159
J Biomol NMR. 2008 Apr;40(4):285-90
pubmed: 18320328
J Exp Med. 2003 Sep 1;198(5):809-21
pubmed: 12953096
Sci Signal. 2014 Dec 09;7(355):ra118
pubmed: 25492967
Methods Mol Biol. 1998;87:25-39
pubmed: 9523256
Sci Signal. 2013 Nov 12;6(301):ra99
pubmed: 24222714
J Biol Chem. 1998 Feb 20;273(8):4539-46
pubmed: 9468509
FEBS Lett. 2001 Jan 26;489(1):67-70
pubmed: 11231015
J Biomol NMR. 1995 Nov;6(3):277-93
pubmed: 8520220
Oncogene. 2001 Mar 1;20(9):1052-62
pubmed: 11314042
J Biol Chem. 2003 Sep 26;278(39):37112-21
pubmed: 12842872
J Biol Chem. 1996 Oct 11;271(41):25646-56
pubmed: 8810341
J Mol Biol. 2007 Nov 9;373(5):1281-92
pubmed: 17897671
Science. 1994 Nov 18;266(5188):1241-7
pubmed: 7526465
Annu Rev Biophys Biomol Struct. 1997;26:259-88
pubmed: 9241420
Mol Cell. 2003 Feb;11(2):471-81
pubmed: 12620234
Trends Cell Biol. 2018 Jun;28(6):420-435
pubmed: 29602697
Bioessays. 2001 May;23(5):436-46
pubmed: 11340625
Biochemistry. 2005 Nov 15;44(45):15042-52
pubmed: 16274251
BMC Immunol. 2006 Jul 13;7:15
pubmed: 16839418
Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
pubmed: 12824383
Nat Rev Immunol. 2014 Dec;14(12):821-6
pubmed: 25359439
J Biomol NMR. 1995 Sep;6(2):135-40
pubmed: 8589602
J Biomol NMR. 2002 May;23(1):23-33
pubmed: 12061715
Nature. 1997 Jan 2;385(6611):93-7
pubmed: 8985255
J Biol Chem. 2000 Jan 21;275(3):2219-30
pubmed: 10636929
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
J Immunol. 1999 Nov 15;163(10):5242-9
pubmed: 10553045
Nat Protoc. 2010 May;5(5):883-97
pubmed: 20431534
Eur J Immunol. 2005 May;35(5):1612-20
pubmed: 15827961
J Mol Biol. 2002 May 24;319(1):209-27
pubmed: 12051947
Comb Chem High Throughput Screen. 2002 Sep;5(6):429-40
pubmed: 12470273
Int Immunol. 2001 Oct;13(10):1265-74
pubmed: 11581171
Nat Rev Immunol. 2001 Nov;1(2):95-107
pubmed: 11905825
Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392-6
pubmed: 7690960
J Immunol. 1996 Nov 1;157(9):3791-5
pubmed: 8892607