Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia.
Adolescent
Adult
Bone Marrow Cells
/ cytology
Child
Child, Preschool
Fanconi Anemia
/ genetics
Fanconi Anemia Complementation Group A Protein
/ genetics
Female
Genetic Therapy
Genetic Vectors
/ genetics
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells
/ metabolism
Humans
Infant
Lentivirus
/ genetics
Male
Mutation
/ genetics
Spain
/ epidemiology
Targeted Gene Repair
Transduction, Genetic
Young Adult
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
22
06
2018
accepted:
18
07
2019
entrez:
11
9
2019
pubmed:
11
9
2019
medline:
13
11
2019
Statut:
ppublish
Résumé
Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date
Identifiants
pubmed: 31501599
doi: 10.1038/s41591-019-0550-z
pii: 10.1038/s41591-019-0550-z
doi:
Substances chimiques
Fanconi Anemia Complementation Group A Protein
0
Banques de données
ClinicalTrials.gov
['NCT03157804']
Types de publication
Clinical Trial, Phase I
Clinical Trial, Phase II
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1396-1401Références
Bagby, G. Recent advances in understanding hematopoiesis in Fanconi anemia. F1000Res. 7, 105 (2018).
doi: 10.12688/f1000research.13213.1
Knies, K. et al. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J. Clin. Invest. 127, 3013–3027 (2017).
doi: 10.1172/JCI92069
Casado, J. A. et al. A comprehensive strategy for the subtyping of Fanconi anemia patients: conclusions from the Spanish Fanconi Anemia research network. J. Med. Genet. 44, 241–249 (2007).
doi: 10.1136/jmg.2006.044719
Taniguchi, T. & D’Andrea, A. D. Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107, 4223–4233 (2006).
doi: 10.1182/blood-2005-10-4240
Butturini, A. et al. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84, 1650–1655 (1994).
pubmed: 8068955
Kutler, D. I. et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 101, 1249–1256 (2003).
doi: 10.1182/blood-2002-07-2170
Ceccaldi, R. et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11, 36–49 (2012).
doi: 10.1016/j.stem.2012.05.013
Croop, J. M. et al. Mobilization and collection of peripheral blood CD34
doi: 10.1182/blood.V98.10.2917
Kelly, P. F. et al. Stem cell collection and gene transfer in Fanconi anemia. Mol. Ther. 15, 211–219 (2007).
doi: 10.1038/sj.mt.6300033
Liu, J. M. et al. Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum. Gene Ther. 10, 2337–2346 (1999).
doi: 10.1089/10430349950016988
Gross, M. et al. Reverse mosaicism in Fanconi anemia: natural gene therapy via molecular self-correction. Cytogenet. Genome Res. 98, 126–135 (2002).
doi: 10.1159/000069805
Hamanoue, S. et al. Myeloid lineage-selective growth of revertant cells in Fanconi anaemia. Br. J. Haematol. 132, 630–635 (2006).
doi: 10.1111/j.1365-2141.2005.05916.x
Mankad, A. et al. Natural gene therapy in monozygotic twins with Fanconi anemia. Blood 107, 3084–3090 (2006).
doi: 10.1182/blood-2005-07-2638
Soulier, J. et al. Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood 105, 1329–1336 (2005).
doi: 10.1182/blood-2004-05-1852
Adair, J. E. et al. Lessons learned from two decades of clinical trial experience in gene therapy for Fanconi anemia. Curr. Gene Ther. 16, 338–348 (2017).
doi: 10.2174/1566523217666170119113029
Rio, P. et al. Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34
doi: 10.1182/blood-2017-03-774174
Meyer, S., Neitzel, H. & Tonnies, H. Chromosomal aberrations associated with clonal evolution and leukemic transformation in Fanconi anemia: clinical and biological implications. Anemia 2012, 349837 (2012).
doi: 10.1155/2012/349837
Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161–e170 (2011).
doi: 10.1182/blood-2010-09-308726
Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science 341, 1233151 (2013).
doi: 10.1126/science.1233151
Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341, 1233158 (2013).
doi: 10.1126/science.1233158
Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).
doi: 10.1126/science.1171242
Eichler, F. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 377, 1630–1638 (2017).
doi: 10.1056/NEJMoa1700554
Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).
doi: 10.1056/NEJMoa1705342
Molina-Estevez, F. J. et al. Lentiviral-mediated gene therapy in Fanconi anemia-A mice reveals long-term engraftment and continuous turnover of corrected HSCs. Curr. Gene Ther. 15, 550–562 (2015).
doi: 10.2174/1566523215666150929110903
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).
doi: 10.1109/TVCG.2014.2346248
Battaile, K. P. et al. In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood 94, 2151–2158 (1999).
pubmed: 10477746
Galimi, F. et al. Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood 100, 2732–2736 (2002).
doi: 10.1182/blood-2002-04-1245
Gush, K. A., Fu, K. L., Grompe, M. & Walsh, C. E. Phenotypic correction of Fanconi anemia group C knockout mice. Blood 95, 700–704 (2000).
pubmed: 10627482
Haneline, L. S. et al. Retroviral-mediated expression of recombinant Fancc enhances the repopulating ability of Fancc
doi: 10.1182/blood-2002-08-2404
Muller, L. U. et al. Rapid lentiviral transduction preserves the engraftment potential of Fanca
doi: 10.1038/mt.2008.67
Rio, P. et al. In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice. Blood 100, 2032–2039 (2002).
pubmed: 12200363
Alter, B. P., Giri, N., Savage, S. A. & Rosenberg, P. S. Cancer in the National Cancer Institute Inherited Bone Marrow Failure Syndrome cohort after fifteen years of follow-up. Haematologica 103, 30–39 (2018).
doi: 10.3324/haematol.2017.178111
Masserot, C. et al. Head and neck squamous cell carcinoma in 13 patients with Fanconi anemia after hematopoietic stem cell transplantation. Cancer 113, 3315–3322 (2008).
doi: 10.1002/cncr.23954
Gonzalez-Murillo, A. et al. Development of lentiviral vectors with optimized transcriptional activity for the gene therapy of patients with Fanconi anemia. Hum. Gene Ther. 21, 623–630 (2010).
doi: 10.1089/hum.2009.141
Castella, M. et al. Chromosome fragility in patients with Fanconi anaemia: diagnostic implications and clinical impact. J. Med. Genet. 48, 242–250 (2011).
doi: 10.1136/jmg.2010.084210
Charrier, S. et al. Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction. Gene Ther. 18, 479–487 (2011).
doi: 10.1038/gt.2010.163
Schmidt, M. et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat. Methods 4, 1051–1057 (2007).
doi: 10.1038/nmeth1103
Gabriel, R. et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat. Med. 15, 1431–1436 (2009).
doi: 10.1038/nm.2057
Paruzynski, A. et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat. Protoc. 5, 1379–1395 (2010).
doi: 10.1038/nprot.2010.87
Afzal, S., Wilkening, S., Von Kalle, C., Schmidt, M. & Fronza, R. GENE-IS: time-efficient and accurate analysis of viral integration events in large-scale gene therapy data. Mol. Ther. Nucleic Acids 6, 133–139 (2017).
doi: 10.1016/j.omtn.2016.12.001