Generating Single Cell-Derived Knockout Clones in Mammalian Cells with CRISPR/Cas9.


Journal

Current protocols in molecular biology
ISSN: 1934-3647
Titre abrégé: Curr Protoc Mol Biol
Pays: United States
ID NLM: 8908160

Informations de publication

Date de publication:
09 2019
Historique:
entrez: 11 9 2019
pubmed: 11 9 2019
medline: 10 6 2020
Statut: ppublish

Résumé

CRISPR/Cas9 technology enables the rapid generation of loss-of-function mutations in a targeted gene in mammalian cells. A single cell harboring those mutations can be used to establish a new cell line, thereby creating a CRISPR-induced knockout clone. These clonal cell lines serve as crucial tools for exploring protein function, analyzing the consequences of gene loss, and investigating the specificity of biological reagents. However, the successful derivation of knockout clones can be technically challenging and may be complicated by multiple factors, including incomplete target ablation and interclonal heterogeneity. Here, we describe optimized protocols and plasmids for generating clonal knockouts in mammalian cell lines. We provide strategies for guide RNA design, CRISPR delivery, and knockout validation that facilitate the derivation of true knockout clones and are amenable to multiplexed gene targeting. These protocols will be broadly useful for researchers seeking to apply CRISPR to study gene function in mammalian cells. © 2019 The Authors.

Identifiants

pubmed: 31503414
doi: 10.1002/cpmb.100
pmc: PMC6741428
mid: NIHMS1038380
doi:

Substances chimiques

RNA, Guide 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e100

Subventions

Organisme : NIH HHS
ID : DP5 OD021385
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA045508
Pays : United States

Informations de copyright

© 2019 The Authors.

Références

Elife. 2017 Sep 19;6:
pubmed: 28926338
Elife. 2017 Oct 24;6:
pubmed: 29063830
Genetics. 2014 Jun;197(2):451-65
pubmed: 24939991
Nat Biotechnol. 2018 Sep;36(8):765-771
pubmed: 30010673
Sci Rep. 2018 Jan 8;8(1):93
pubmed: 29311693
Int J Mol Sci. 2013 Oct 31;14(11):21551-60
pubmed: 24185907
J Vis Exp. 2018 May 25;(135):
pubmed: 29889198
Cell. 2016 Jun 2;165(6):1319-1322
pubmed: 27259145
Cell Cycle. 2005 Apr;4(4):564-7
pubmed: 15876870
Nat Commun. 2018 May 1;9(1):1744
pubmed: 29717121
Nat Biotechnol. 2015 Jun;33(6):661-7
pubmed: 25961408
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
Biotechniques. 2008 Apr;44(5):613-6
pubmed: 18474035
Curr Protoc Mol Biol. 2006 May;Appendix 3:Appendix 3F
pubmed: 18265370
Nature. 2012 Mar 28;483(7391):603-7
pubmed: 22460905
Chromosoma. 2010 Apr;119(2):149-65
pubmed: 19904549
Mol Cell. 2015 May 21;58(4):575-85
pubmed: 26000843
3 Biotech. 2013 Feb;3(1):61-70
pubmed: 28324350
Hum Gene Ther. 2005 Nov;16(11):1241-6
pubmed: 16259557
Biochim Biophys Acta. 2016 Sep;1863(9):2333-44
pubmed: 27350235
Cold Spring Harb Protoc. 2013 Aug 01;2013(8):734-7
pubmed: 23906912
Trends Biotechnol. 2013 Jul;31(7):397-405
pubmed: 23664777
Mol Ther. 2016 Apr;24(4):678-84
pubmed: 26867951
Mol Cell Proteomics. 2008 Oct;7(10):2019-27
pubmed: 18669619
F1000Res. 2014 Oct 02;3:232
pubmed: 25324967
Science. 2007 Mar 23;315(5819):1709-12
pubmed: 17379808
Free Radic Biol Med. 2007 Sep 1;43(5):781-8
pubmed: 17664141
Curr Protoc Mol Biol. 2001 May;Chapter 2:Unit2.5A
pubmed: 18265185
Nat Methods. 2017 Aug 31;14(9):831-832
pubmed: 28858339
Hum Gene Ther. 2001 Oct 10;12(15):1893-905
pubmed: 11589831
Mol Cell. 2018 Jun 7;70(5):801-813.e6
pubmed: 29804829
Oncotarget. 2012 Dec;3(12):1629-40
pubmed: 23283305
Nature. 2007 Apr 12;446(7137):815-9
pubmed: 17429401
PLoS One. 2017 Jun 1;12(6):e0178700
pubmed: 28570605
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14819-24
pubmed: 17001007
Nature. 2004 Dec 23;432(7020):1036-40
pubmed: 15616564
Elife. 2017 Mar 24;6:
pubmed: 28337968
Curr Protoc Mol Biol. 2008 Jul;Chapter 10:Unit 10.8
pubmed: 18633991
J Med Chem. 2016 Mar 24;59(6):2346-61
pubmed: 26878898
Nat Med. 2018 Jul;24(7):927-930
pubmed: 29892067
Anticancer Res. 2017 May;37(5):2343-2354
pubmed: 28476800
Elife. 2018 Feb 08;7:
pubmed: 29417930
Genome Biol. 2017 Jun 14;18(1):108
pubmed: 28615073
Genome Biol. 2015 Nov 27;16:260
pubmed: 26612492
Science. 2018 Nov 16;362(6416):
pubmed: 30442778
Cell. 2013 Sep 12;154(6):1380-9
pubmed: 23992846
Curr Protoc Mol Biol. 2019 Sep;128(1):e100
pubmed: 31503414
Genome Biol. 2017 Jun 14;18(1):109
pubmed: 28615035
PLoS Biol. 2017 Nov 30;15(11):e2003213
pubmed: 29190685
Cell. 2017 Jan 12;168(1-2):20-36
pubmed: 27866654

Auteurs

Christopher J Giuliano (CJ)

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Stony Brook University, Stony Brook, New York.
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Ann Lin (A)

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Stony Brook University, Stony Brook, New York.

Vishruth Girish (V)

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Stony Brook University, Stony Brook, New York.

Jason M Sheltzer (JM)

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH