Pharmacogenomic polygenic response score predicts ischaemic events and cardiovascular mortality in clopidogrel-treated patients.
Aged
Brain Ischemia
/ mortality
Clopidogrel
/ adverse effects
Coronary Artery Disease
/ blood
Coronary Thrombosis
/ mortality
Decision Support Techniques
Europe
Female
Humans
Male
Middle Aged
Myocardial Infarction
/ mortality
Percutaneous Coronary Intervention
/ adverse effects
Pharmacogenomic Variants
Platelet Aggregation
/ drug effects
Platelet Aggregation Inhibitors
/ adverse effects
Polymorphism, Single Nucleotide
Predictive Value of Tests
Risk Assessment
Risk Factors
Stents
Stroke
/ mortality
Treatment Outcome
Clopidogrel
Pharmacogenetics
Platelet aggregation
Journal
European heart journal. Cardiovascular pharmacotherapy
ISSN: 2055-6845
Titre abrégé: Eur Heart J Cardiovasc Pharmacother
Pays: England
ID NLM: 101669491
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
received:
23
07
2019
revised:
15
08
2019
accepted:
29
08
2019
pubmed:
11
9
2019
medline:
2
12
2020
entrez:
11
9
2019
Statut:
ppublish
Résumé
Clopidogrel is prescribed for the prevention of atherothrombotic events. While investigations have identified genetic determinants of inter-individual variability in on-treatment platelet inhibition (e.g. CYP2C19*2), evidence that these variants have clinical utility to predict major adverse cardiovascular events (CVEs) remains controversial. We assessed the impact of 31 candidate gene polymorphisms on adenosine diphosphate (ADP)-stimulated platelet reactivity in 3391 clopidogrel-treated coronary artery disease patients of the International Clopidogrel Pharmacogenomics Consortium (ICPC). The influence of these polymorphisms on CVEs was tested in 2134 ICPC patients (N = 129 events) in whom clinical event data were available. Several variants were associated with on-treatment ADP-stimulated platelet reactivity (CYP2C19*2, P = 8.8 × 10-54; CES1 G143E, P = 1.3 × 10-16; CYP2C19*17, P = 9.5 × 10-10; CYP2B6 1294 + 53 C > T, P = 3.0 × 10-4; CYP2B6 516 G > T, P = 1.0 × 10-3; CYP2C9*2, P = 1.2 × 10-3; and CYP2C9*3, P = 1.5 × 10-3). While no individual variant was associated with CVEs, generation of a pharmacogenomic polygenic response score (PgxRS) revealed that patients who carried a greater number of alleles that associated with increased on-treatment platelet reactivity were more likely to experience CVEs (β = 0.17, SE 0.06, P = 0.01) and cardiovascular-related death (β = 0.43, SE 0.16, P = 0.007). Patients who carried eight or more risk alleles were significantly more likely to experience CVEs [odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.14-2.76, P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35-14.27, P = 0.01) compared to patients who carried six or fewer of these alleles. Several polymorphisms impact clopidogrel response and PgxRS is a predictor of cardiovascular outcomes. Additional investigations that identify novel determinants of clopidogrel response and validating polygenic models may facilitate future precision medicine strategies.
Identifiants
pubmed: 31504375
pii: 5559481
doi: 10.1093/ehjcvp/pvz045
pmc: PMC7363022
doi:
Substances chimiques
Platelet Aggregation Inhibitors
0
Clopidogrel
A74586SNO7
Types de publication
Journal Article
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
203-210Subventions
Organisme : NHLBI NIH HHS
ID : U01 HL105198
Pays : United States
Organisme : NIGMS NIH HHS
ID : R24 GM061374
Pays : United States
Organisme : NHLBI NIH HHS
ID : U19 HL065962
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL137922
Pays : United States
Organisme : NIGMS NIH HHS
ID : K23 GM102678
Pays : United States
Organisme : NIGMS NIH HHS
ID : U01 GM074518
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.
Références
Clin Pharmacol Ther. 2006 Jan;79(1):103-13
pubmed: 16413245
JACC Cardiovasc Interv. 2018 Jan 22;11(2):181-191
pubmed: 29102571
N Engl J Med. 2009 Jan 22;360(4):363-75
pubmed: 19106083
Clin Pharmacol Ther. 2013 Sep;94(3):317-23
pubmed: 23698643
Eur J Pharm Sci. 2016 Jan 20;82:64-78
pubmed: 26524713
Clin Pharmacol Ther. 2012 May;91(5):774-6
pubmed: 22513313
Circulation. 2007 May 1;115(17):2344-51
pubmed: 17470709
Lancet. 2010 Oct 16;376(9749):1320-8
pubmed: 20801498
J Am Coll Cardiol. 2014 Dec 23;64(24):e139-e228
pubmed: 25260718
J Biol Chem. 2005 Jul 1;280(26):24680-9
pubmed: 15851471
JAMA. 2009 Aug 26;302(8):849-57
pubmed: 19706858
Thromb Haemost. 2015 Jan;113(1):37-52
pubmed: 25231675
N Engl J Med. 2009 Sep 10;361(11):1045-57
pubmed: 19717846
Thromb Res. 2012 Apr;129(4):441-6
pubmed: 21831410
Circ Cardiovasc Genet. 2013 Apr;6(2):184-92
pubmed: 23392654
Semin Thromb Hemost. 1999;25 Suppl 2:29-33
pubmed: 10440420
Blood. 2006 Oct 1;108(7):2244-7
pubmed: 16772608
Blood. 2016 Aug 18;128(7):1003-12
pubmed: 27313330
Nat Genet. 2010 Jul;42(7):608-13
pubmed: 20526338
J Thromb Haemost. 2014 Jan;12(1):2-13
pubmed: 24406062
N Engl J Med. 2009 Jan 22;360(4):354-62
pubmed: 19106084
Pharmacogenet Genomics. 2017 Apr;27(4):159-163
pubmed: 28207573
J Pharmacol Exp Ther. 2013 Mar;344(3):665-72
pubmed: 23275066
N Engl J Med. 2007 Nov 15;357(20):2001-15
pubmed: 17982182
Bioinformatics. 2005 Jan 15;21(2):263-5
pubmed: 15297300
J Thromb Haemost. 2013 Sep;11(9):1640-6
pubmed: 23809542
Thromb Haemost. 2016 Apr;115(4):844-55
pubmed: 26607655
Int J Cardiol. 2013 Feb 10;163(1):79-86
pubmed: 23260377
Blood. 2011 Sep 22;118(12):3367-75
pubmed: 21791418
Xenobiotica. 2017 Dec;47(12):1130-1138
pubmed: 27937053
Am Heart J. 2018 Apr;198:152-159
pubmed: 29653637
Pharmacogenet Genomics. 2013 Jan;23(1):1-8
pubmed: 23111421