Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties.
Aortic Valve
/ metabolism
Aortic Valve Stenosis
/ genetics
Bicuspid Aortic Valve Disease
Biomarkers
/ analysis
Calcinosis
/ genetics
Cell Differentiation
Cells, Cultured
Female
Gene Expression Profiling
Heart Defects, Congenital
/ genetics
Heart Valve Diseases
/ genetics
Humans
Interstitial Cells of Cajal
/ metabolism
Male
Myofibroblasts
/ cytology
Osteogenesis
Stem Cells
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 09 2019
10 09 2019
Historique:
received:
02
12
2018
accepted:
13
08
2019
entrez:
12
9
2019
pubmed:
12
9
2019
medline:
31
10
2020
Statut:
epublish
Résumé
Valve interstitial cells (VICs) are crucial in the development of calcific aortic valve disease. The purpose of the present investigation was to compare the phenotype, differentiation potential and stem cell-like properties of cells from calcified and healthy aortic valves. VICs were isolated from human healthy and calcified aortic valves. Calcification was induced with osteogenic medium. Unlike VICs from healthy valves, VICs from calcified valves cultured without osteogenic medium stained positively for calcium deposits with Alizarin Red confirming their calcific phenotype. Stimulation of VICs from calcified valves with osteogenic medium increased calcification (p = 0.02), but not significantly different from healthy VICs. When stimulated with myofibroblastic medium, VICs from calcified valves had lower expression of myofibroblastic markers, measured by flow cytometry and RT-qPCR, compared to healthy VICs. Contraction of collagen gel (a measure of myofibroblastic activity) was attenuated in cells from calcified valves (p = 0.04). Moreover, VICs from calcified valves, unlike cells from healthy valves had lower potential to differentiate into adipogenic pathway and lower expression of stem cell-associated markers CD106 (p = 0.04) and aldehyde dehydrogenase (p = 0.04). In conclusion, VICs from calcified aortic have reduced multipotency compared to cells from healthy valves, which should be considered when investigating possible medical treatments of aortic valve calcification.
Identifiants
pubmed: 31506459
doi: 10.1038/s41598-019-49016-0
pii: 10.1038/s41598-019-49016-0
pmc: PMC6736931
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12934Références
Biomed Res Int. 2017;2017:4820275
pubmed: 28497051
Physiol Rev. 2004 Jul;84(3):767-801
pubmed: 15269336
Stem Cell Reports. 2017 Mar 14;8(3):619-633
pubmed: 28238795
Circulation. 2001 Mar 20;103(11):1522-8
pubmed: 11257079
Arterioscler Thromb Vasc Biol. 2012 Nov;32(11):2711-20
pubmed: 22982459
J Heart Valve Dis. 2004 May;13(3):478-85; discussion 485-6
pubmed: 15222296
Cardiovasc Res. 2013 Jun 1;98(3):402-10
pubmed: 23483047
Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2965-71
pubmed: 21903944
Circulation. 2017 May 16;135(20):1951-1955
pubmed: 28507250
J Mol Cell Cardiol. 2011 Dec;51(6):955-65
pubmed: 21871458
Eur Cardiol. 2015 Winter;10(2):108-112
pubmed: 27274771
Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):936-42
pubmed: 19304575
J Investig Med. 2007 Sep;55(6):278-83
pubmed: 17963676
Circ Res. 2013 Jul 5;113(2):198-208
pubmed: 23833294
J Investig Med. 2007 Sep;55(6):284-91
pubmed: 17963677
Stem Cells Dev. 2011 Jan;20(1):53-66
pubmed: 20528146
J Am Coll Cardiol. 2015 Aug 4;66(5):561-77
pubmed: 26227196
J Bone Miner Metab. 2008;26(4):312-20
pubmed: 18600396
Circ Res. 2017 Feb 17;120(4):604-606
pubmed: 28209788
Atherosclerosis. 2015 Sep;242(1):251-260
pubmed: 26232165
Curr Stem Cell Res Ther. 2008 Dec;3(4):237-46
pubmed: 19075754
J Am Heart Assoc. 2017 Sep 14;6(9):
pubmed: 28912209
J Am Coll Cardiol. 2012 Nov 6;60(19):1854-63
pubmed: 23062541
Eur Heart J. 2003 Jul;24(13):1231-43
pubmed: 12831818
Curr Probl Cardiol. 2007 Nov;32(11):609-61
pubmed: 17976510
Am J Pathol. 2009 Mar;174(3):1109-19
pubmed: 19218344
J Mol Cell Cardiol. 2011 Mar;50(3):561-9
pubmed: 21163264
Nat Rev Cardiol. 2014 Apr;11(4):218-31
pubmed: 24445487
Circulation. 2007 Sep 11;116(11 Suppl):I282-7
pubmed: 17846318
Arterioscler Thromb Vasc Biol. 2014 Nov;34(11):2387-93
pubmed: 25189570
Front Physiol. 2018 Nov 20;9:1635
pubmed: 30524301
Tissue Eng Part C Methods. 2015 Aug;21(8):795-807
pubmed: 25594437
Cytotherapy. 2006;8(4):315-7
pubmed: 16923606
J Vis Exp. 2010 Dec 29;(46):
pubmed: 21248687
Med Sci Monit Basic Res. 2016 Sep 26;22:95-106
pubmed: 27667570
Int J Mol Sci. 2016 Jan 19;17(1):
pubmed: 26797605
Am J Pathol. 2007 Nov;171(5):1407-18
pubmed: 17823281
J Geriatr Cardiol. 2016 Dec;13(12):941-944
pubmed: 28321235
Circulation. 2006 Jul 4;114(1 Suppl):I547-52
pubmed: 16820635
Immune Netw. 2016 Feb;16(1):26-32
pubmed: 26937229
Ann Thorac Surg. 2008 Jul;86(1):71-6
pubmed: 18573401
Expert Rev Cardiovasc Ther. 2015 May;13(5):461-3
pubmed: 25882205
Cell Physiol Biochem. 2017;44(3):884-896
pubmed: 29176317
Expert Rev Cardiovasc Ther. 2014 Jul;12(7):851-62
pubmed: 24857537
Ann Thorac Surg. 2007 Mar;83(3):946-53
pubmed: 17307438
Curr Protoc Pharmacol. 2013 Jun;Chapter 14:Unit 14.25
pubmed: 23744710
Oncotarget. 2016 Mar 8;7(10):11018-32
pubmed: 26783961
Circ Cardiovasc Genet. 2009 Oct;2(5):489-98
pubmed: 20031625
J Am Heart Assoc. 2017 Mar 14;6(3):
pubmed: 28292746
Physiol Genomics. 2009 Nov 6;39(3):160-8
pubmed: 19723774
Front Cardiovasc Med. 2018 Mar 26;5:27
pubmed: 29632866
Front Physiol. 2018 Mar 12;9:201
pubmed: 29593562
Cell Mol Life Sci. 2016 Sep;73(17):3311-21
pubmed: 27141940
PPAR Res. 2006;2006:67297
pubmed: 17259668
Arterioscler Thromb Vasc Biol. 2014 Dec;34(12):2601-8
pubmed: 25341799