Stepwise Preparation of a Polymer Comprising Protein Building Blocks on a Solid Support for Immunosensing Platform.
Immunosensor
Z-domain
antibody-binding protein
biotinylation
protein interaction
surface plasmon resonance
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
10 Feb 2020
10 Feb 2020
Historique:
pubmed:
25
9
2019
medline:
2
10
2020
entrez:
25
9
2019
Statut:
ppublish
Résumé
In immunosensing, immobilization of the antibody on the sensing platform significantly influences the performance of the sensor. Herein, we propose a novel antibody-immobilization method based on a protein-polymer chain containing multiple copies of an antibody-binding protein, the Z-domain. In our approach, the Z-domain-containing polymer is prepared on the surface of the sensing platform with a biotinylation reaction from the archaeon Sulfolobus tokodaii. Biotinylation from S. tokodaii has a unique property by which biotin protein ligase (BPL) forms an extremely stable complex with its biotinylated substrate protein (BCCP). Here, we employed two types of engineered proteins: one was the fusion protein of BCCP with the Z-domain (BZB), in which BCCP was genetically attached to the N- and C-termini of the Z-domain; the other was a BPL dimer prepared by connecting two BPL molecules with a cross-linking reagent. We applied these two engineered proteins alternately onto the BPL-modified solid support of the surface plasmon resonance sensor chip, and succeeded in growing polymer chains comprising multiple units of BZB and the BPL dimer. The antibody-binding capability of the Z-domain-containing polymer thus prepared is adjustable by controlling the number of cycles of protein addition and the surface density of the polymer on the solid support.
Identifiants
pubmed: 31548440
doi: 10.2116/analsci.19P318
pii: 10.2116/analsci.19P318
doi:
Substances chimiques
Archaeal Proteins
0
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
213-217Références
E. Gizeli and C. R. Lowe, Curr. Opin. Biotechnol., 1996, 7, 66.
doi: 10.1016/S0958-1669(96)80097-8
pubmed: 8742379
B. Hock, Anal. Chim. Acta, 1997, 347, 177.
doi: 10.1016/S0003-2670(97)00167-0
M. Shen, J. F. Rusling, and C. K. Dixit, Methods, 2017, 116, 95.
doi: 10.1016/j.ymeth.2016.11.010
pubmed: 27876681
N. G. Welch, J. A. Scoble, B. W. Muir, and P. J. Pigram, Biointerphases, 2017, 12, 02D301.
doi: 10.1116/1.4978435
pubmed: 28301944
M. Iijima and S. Kuroda, Biosens. Bioelectron., 2017, 89, 810.
doi: 10.1016/j.bios.2016.10.009
pubmed: 27818052
S. Miyake, D. Irikura, and T. Yamasaki, Anal. Sci., 2019, 35, 223.
doi: 10.2116/analsci.18N022
pubmed: 30745512
L. Yuan, W. Wei, and S. Liu, Biosens. Bioelectron., 2012, 38, 79.
doi: 10.1016/j.bios.2012.05.007
pubmed: 22766469
Y. Liu, Y. Zhang, Y. Zhao, and J. Yu, Colloids Surf. B Biointerfaces, 2014, 121, 21.
doi: 10.1016/j.colsurfb.2014.05.031
pubmed: 24929524
S. Rafique, W. Bin, and A. S. Bhatti, Bioelectrochemistry, 2015, 101, 75.
doi: 10.1016/j.bioelechem.2014.08.001
pubmed: 25156671
C. J. Huang, Y. Li, and S. Jiang, Anal. Chem., 2012, 84, 3440.
doi: 10.1021/ac3003769
pubmed: 22409836
L. Song, J. Zhao, S. Luan, J. Ma, J. Liu, X. Xu, and J. Yin, ACS Appl. Mater. Interfaces, 2013, 5, 13207.
doi: 10.1021/am404206v
pubmed: 24299274
J. Ma, S. Luan, L. Song, J. Jin, S. Yuan, S. Yan, H. Yang, H. Shi, and J. Yin, ACS Appl. Mater. Interfaces, 2014, 6, 1971.
doi: 10.1021/am405017h
pubmed: 24422426
A. Makaraviciute and A. Ramanaviciene, Biosens. Bioelectron., 2013, 50, 460.
doi: 10.1016/j.bios.2013.06.060
pubmed: 23911661
W. Lee, B. K. Oh, Y. M. Bae, S. H. Paek, W. H. Lee, and J. W. Choi, Biosens. Bioelectron., 2003, 19, 185.
doi: 10.1016/S0956-5663(03)00195-7
pubmed: 14611753
S. Ko, T. J. Park, H. S. Kim, J. H. Kim, and Y. J. Cho, Biosens. Bioelectron., 2009, 24, 2592.
doi: 10.1016/j.bios.2009.01.030
pubmed: 19243930
J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem., 2007, 79, 2680.
doi: 10.1021/ac0619231
pubmed: 17341056
T. H. Ha, S. O. Jung, J. M. Lee, K. Y. Lee, Y. Lee, J. S. Park, and B. H. Chung, Anal. Chem., 2007, 79, 546.
doi: 10.1021/ac061639+
pubmed: 17222019
E. de Juan-Franco, A. Caruz, J. R. Pedrajas, and L. M. Lechuga, Analyst, 2013, 138, 2023.
doi: 10.1039/c3an36498d
pubmed: 23400028
H. Y. Song, X. Zhou, J. Hobley, and X. Su, Langmuir, 2012, 28, 997.
doi: 10.1021/la202734f
pubmed: 22126088
N. Tajima, M. Takai, and K. Ishihara, Anal. Chem., 2011, 83, 1969.
doi: 10.1021/ac1026786
pubmed: 21338074
B. Nilsson, T. Moks, B. Jansson, L. Abrahmsén, A. Elmblad, E. Holmgren, C. Henrichson, T. A. Jones, and M. Uhlén, Protein Eng., 1987, 1, 107.
doi: 10.1093/protein/1.2.107
pubmed: 3507693
J. E. Cronan Jr., J. Biol. Chem., 1990, 265, 10327.
doi: 10.1016/S0021-9258(18)86949-6
pubmed: 2113052
A. Chapman-Smith and J. E. Cronan Jr., Trends Biochem. Sci., 1999, 24, 359.
doi: 10.1016/S0968-0004(99)01438-3
pubmed: 10470036
S. Sueda, H. Tanaka, and M. Yamagishi, Anal. Biochem., 2009, 393, 189.
doi: 10.1016/j.ab.2009.06.027
pubmed: 19560433
S. Sueda, S. Yoneda, and H. Hayashi, Chembiochem, 2011, 12, 1367.
doi: 10.1002/cbic.201000738
pubmed: 21608095
H. Miyao, Y. Ikeda, A. Shiraishi, Y. Kawakami, and S. Sueda, Anal. Biochem., 2015, 484, 113.
doi: 10.1016/j.ab.2015.05.010
pubmed: 25998102
S. Sueda, Y. Shinboku, and T. Kusaba, Anal. Sci., 2013, 29, 491.
doi: 10.2116/analsci.29.491
pubmed: 23665620
C. J. Huang, N. D. Brault, Y. Li, Q. Yu, and S. Jiang, Adv. Mater., 2012, 24, 1834.
doi: 10.1002/adma.201104849
pubmed: 22411004
N. D. Brault, H. S. Sundaram, C. J. Huang, Y. Li, Q. Yu, and S. Jiang, Biomacromolecules, 2012, 13, 4049.
doi: 10.1021/bm301335r
pubmed: 23101430