An Adaptive Approach in Polymer-Drug Nanoparticle Engineering using Slanted Electrohydrodynamic Needles and Horizontal Spraying Planes.


Journal

AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 04 07 2024
accepted: 08 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The present study focuses on the adaptive development of a key peripheral component of conventional electrohydrodynamic atomisation (EHDA) systems, namely spraying needles (also referred to as nozzles or spinnerets). Needle geometry and planar alignment are often overlooked. To explore potential impact, curcumin-loaded polylactic-co-glycolic acid (PLGA) and methoxypolyethylene glycol amine (PEG)-based nanoparticles were fabricated. To elucidate these technological aspects, a horizontal electrospraying needle regime was adapted, and three formulations containing different polymeric ratios of PLGA: PEG (50:50, 75:25, and 25:75) were prepared and utilised. Furthermore, processing head tip geometries e.g. blunt (a flat needle exit) or slanted (a 45° inclination angle), were subjected to various flow rates (5 µL-100 µL). Successful engineering of curcumin-loaded polymeric nanoparticles (< 150 nm) was observed. In-silico analysis demonstrated stable properties of curcumin, PEG and PLGA (molecular docking studies) and fluid flow direction towards the Taylor-Cone (also known as the stable jet mode), was shown by the assessment of fluid dynamics simulations in various needle outlets. Curcumin-loaded nanoparticles were characterised using an array of methods including Scanning electron microscopy, Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, as well as their contact angles, encapsulation efficiencies and finally release patterns. The discrepancy when spraying with blunt and angled needles was evidenced by electron micrographs and deposition patterns. Spraying plumes utilising slanted needles enhanced particle collection efficiency and distribution of resultant atomised structures. In addition to needle design, fine-tuning the applied voltage and flow rate impacted the electrospraying process. The coefficient of variation was calculated as 30.5% and 25.6% for blunt and angled needle outlets, respectively, presenting improved particle uniformity with the employment of angled needle tips (8-G needle at 25 µL). The interplay of processing parameters with the utilisation of a slanted exit at a capillary optimised the spray pattern and formation of desired nanoparticulates. These demonstrate great applicability for controlled deposition and up-scaling processes in the pharmaceutical industry. These advances elaborate on EHDA processes, indicating a more cost-effective and scalable approach for industrial applications, facilitating the generation of a diverse range of particle systems in a controlled and more uniform fashion.

Identifiants

pubmed: 39477831
doi: 10.1208/s12249-024-02971-y
pii: 10.1208/s12249-024-02971-y
doi:

Substances chimiques

Polylactic Acid-Polyglycolic Acid Copolymer 1SIA8062RS
Polyethylene Glycols 3WJQ0SDW1A
Curcumin IT942ZTH98
Polymers 0
Drug Carriers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

257

Informations de copyright

© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Références

Mehta P, Al-Kinani AA, Arshad MS, Singh N, van der Merwe SM, Chang M, et al. Engineering and development of chitosan-based nano coatings for ocular contact lenses. J Pharm Sci. 2019;108:1540–51. https://doi.org/10.1016/j.xphs.2018.11.036 .
doi: 10.1016/j.xphs.2018.11.036 pubmed: 30513319
Ahmad Z, Stride E, Edirisinghe M. Novel preparation of transdermal drug-delivery patches and functional wound healing materials. J Drug Target. 2009;17:724–9. https://doi.org/10.3109/10611860903085386 .
doi: 10.3109/10611860903085386 pubmed: 19845489
Gao Y, Chang M, Li J. Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Adv. 2016;6(91). https://doi.org/10.1039/C6RA17162A .
Akhlaq M, Arshad MS, Mudassir AM, Hussain A, Kucuk I, Haj-Ahmad R, et al. Formulation and evaluation of anti-rheumatic dexibuprofen transdermal patches: a quality-by-design approach. J Drug Target. 2016;24:603–12. https://doi.org/10.3109/1061186X.2015.1116538 .
doi: 10.3109/1061186X.2015.1116538 pubmed: 26586147
Ali A, Sohail Arshad M, Ahmad Khan M, Chang M, Ahmad Z. Recent advances towards overcoming the blood–brain barrier. Drug Discov Today. 2023;28:103735. https://doi.org/10.1016/j.drudis.2023.103735 .
doi: 10.1016/j.drudis.2023.103735 pubmed: 37573965
Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, et al. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev. 2021;176:113788. https://doi.org/10.1016/j.addr.2021.04.026 .
doi: 10.1016/j.addr.2021.04.026 pubmed: 33957180
Arshad S, Mujeeb M, Zafar S, Khan W, Patel M, Yousef B, et al. EHDA engineering of piroxicam-pvp components for pharmaceutical dosages. J Drug Deliv Sci Technol. 2022;78:103927. https://doi.org/10.1016/j.jddst.2022.103927 .
doi: 10.1016/j.jddst.2022.103927
Wang B, Chen X, Huang J, Chang M. Title: 3D electrohydrodynamic printing of highly aligned dual-core graphene composite matrices. Carbon. 2019;153. https://doi.org/10.1016/j.carbon.2019.07.030 .
Muldoon K, Song Y, Ahmad Z, Chen X, Chang M. High precision 3d printing for micro to nano scale biomedical and electronic devices. Micromachines. 2022;13(4):642. https://doi.org/10.3390/mi13040642 .
doi: 10.3390/mi13040642 pubmed: 35457946 pmcid: 9033068
Mehta P, Al-Kinani AA, Haj-Ahmad R, Arshad MS, Chang M, Alany RG, et al. Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings. Eur J Pharm Biopharm. 2017;119:170–84. https://doi.org/10.1016/j.ejpb.2017.06.016 .
doi: 10.1016/j.ejpb.2017.06.016 pubmed: 28625688
Mehta P, Zaman A, Smith A, Rasekh M, Haj-Ahmad R, Arshad MS, et al. Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques. Adv Th. 2019;2:1800024. https://doi.org/10.1002/adtp.201800024 .
doi: 10.1002/adtp.201800024
Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang C. Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci. 2015;125:32–57. https://doi.org/10.1016/j.ces.2014.08.061 .
doi: 10.1016/j.ces.2014.08.061 pubmed: 25684778
Solghi S, Emam-Djomeh Z, Fathi M, Farahani F. The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. J Food Process Eng. 2020;43:e13403. https://doi.org/10.1111/jfpe.13403 .
doi: 10.1111/jfpe.13403
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front Pharmacol. 2020;11:487. https://doi.org/10.3389/fphar.2020.00487 .
doi: 10.3389/fphar.2020.00487 pubmed: 32425772 pmcid: 7206872
Lee W, Loo C, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11:338–78. https://doi.org/10.2174/1570159X11311040002 .
doi: 10.2174/1570159X11311040002 pubmed: 24381528 pmcid: 3744901
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother. 2021;134:111119. https://doi.org/10.1016/j.biopha.2020.111119 .
doi: 10.1016/j.biopha.2020.111119 pubmed: 33360051
Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res. 2006;1122:56–64. https://doi.org/10.1016/j.brainres.2006.09.009 .
doi: 10.1016/j.brainres.2006.09.009 pubmed: 17022948
Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 2019;9:20192–206. https://doi.org/10.1039/C9RA03102B .
doi: 10.1039/C9RA03102B pubmed: 35514703 pmcid: 9065541
Ratrey P, Dalvi SV, Mishra A. Enhancing aqueous solubility and antibacterial activity of curcumin by complexing with cell-penetrating octaarginine. ACS Omega. 2020;5:19004–13. https://doi.org/10.1021/acsomega.0c02321 .
doi: 10.1021/acsomega.0c02321 pubmed: 32775902 pmcid: 7408183
Dorati R, DeTrizio A, Spalla M, Migliavacca R, Pagani L, Pisani S, et al. Gentamicin sulfate peg-plga/plga-h nanoparticles: screening design and antimicrobial effect evaluation toward clinic bacterial isolates. Nanomaterials. 2018;8(1):37. https://doi.org/10.3390/nano8010037 .
doi: 10.3390/nano8010037 pubmed: 29329209 pmcid: 5791124
Pamujula S, Graves RA, Moiseyev R, Bostanian LA, Kishore V, Mandal TK. Preparation of polylactide-co-glycolide and chitosan hybrid microcapsules of amifostine using coaxial ultrasonic atomizer with solvent evaporation. J Pharm Pharmacol. 2008;60:283–9. https://doi.org/10.1211/jpp.60.3.0002 .
doi: 10.1211/jpp.60.3.0002 pubmed: 18284807
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016;81:162–71. https://doi.org/10.1016/j.ejps.2015.10.021 .
doi: 10.1016/j.ejps.2015.10.021 pubmed: 26517962
Arshad MS, Ayub A, Zafar S, Rana SJ, Muhammad SA, Aleem A, et al. Fabrication of miconazole nitrate solid lipid nanoparticle loaded microneedle patches for the treatment of candida albicans biofilms. RSC Pharm. 2024;1:458–71. https://doi.org/10.1039/D4PM00042K .
doi: 10.1039/D4PM00042K
Arshad S, Zafar S, Rana S, Khan HMs, Chohan T, Abbas K, et al. Preparation and characterization of ascorbic acid electrospun micro-material loaded gel for topical applications. J Drug Deliv Sci Technol. 2023;89:105104. https://doi.org/10.1016/j.jddst.2023.105104 .
doi: 10.1016/j.jddst.2023.105104
Ahmad H, Ali Chohan T, Mudassir J, Mehta P, Yousef B, Zaman A, et al. Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. Int J Pharm. 2022;616:121512. https://doi.org/10.1016/j.ijpharm.2022.121512 .
doi: 10.1016/j.ijpharm.2022.121512 pubmed: 35085730
Arshad MS, Hussain S, Zafar S, Rana SJ, Chohan TA, Hamza M, et al. Transcutaneous delivery of dexamethasone sodium phosphate via microneedle-assisted iontophoretic enhancement – a potential therapeutic option for inflammatory disorders. Pharm Res. 2024;41:1183–99. https://doi.org/10.1007/s11095-024-03719-w .
doi: 10.1007/s11095-024-03719-w pubmed: 38849712
Siddique MI, Katas H, Sarfraz M, Chohan T, Jamil A, Mohd Amin M, Cairul Iqbal. Clinical insights into topically applied multipronged nanoparticles in subjects with atopic dermatitis. J Drug Deliv Sci Technol. 2021;65:102744. https://doi.org/10.1016/j.jddst.2021.102744 .
doi: 10.1016/j.jddst.2021.102744
Rana SJ, Zafar S, Shahzad A, Basit M, Mudassir J, Akhlaq M, et al. Preparation of tamsulosin hydrochloride-loaded mucoadhesive in situ gelling polymeric formulation for nasal delivery in geriatrics. AAPS PharmSciTech. 2023;24:242. https://doi.org/10.1208/s12249-023-02700-x .
doi: 10.1208/s12249-023-02700-x pubmed: 38017208
Kochar P, Nayak K, Thakkar S, Polaka S, Khunt D, Misra M. Exploring the potential of minoxidil tretinoin liposomal based hydrogel for topical delivery in the treatment of androgenic alopecia. Cutan Ocul Toxicol. 2020;39:43–53. https://doi.org/10.1080/15569527.2019.1694032 .
doi: 10.1080/15569527.2019.1694032 pubmed: 31741401
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52. https://doi.org/10.1063/1.464913 .
doi: 10.1063/1.464913
Stewart JJP. Optimization of parameters for semiempirical methods II. Applications. J Comput Chem. 1989;10:221–64. https://doi.org/10.1002/jcc.540100209 .
doi: 10.1002/jcc.540100209
Katzer T, Leite Junior A, Beck R, da Silva C. Physiopathology and current treatments of androgenetic alopecia: going beyond androgens and anti-androgens. Dermatol Ther. 2019;32:e13059. https://doi.org/10.1111/dth.13059 .
doi: 10.1111/dth.13059 pubmed: 31400254
Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: a review. Drug Des Devel Ther. 2019;13:2777–86. https://doi.org/10.2147/DDDT.S214907 .
doi: 10.2147/DDDT.S214907 pubmed: 31496654
Liu Z, Liu Y, He L, Cui L, Liang N, Choi J, et al. A comprehensive investigation of process parameters and material properties effects on printed line quality of aerosol jet printing based on coupled three-dimensional numerical models. Int J Precision Eng Manufacturing-Green Technol. 2024;11. https://doi.org/10.1007/s40684-024-00604-0 .
Zafar S, Rana SJ, Sayed E, Chohan TA, Kucuk I, Nazari K, et al. Enhancing linezolid activity in the treatment of oral biofilms using novel chitosan microneedles with iontophoretic control. Biomaterials Adv. 2024;164:213995. https://doi.org/10.1016/j.bioadv.2024.213995 .
doi: 10.1016/j.bioadv.2024.213995
Kumar P, Meenakshi AA, Dangi M, Arya VJJ. A conceptual DFT based analysis of thermodynamic and global reactivity parameter indices for pyrogallol based complex with Al3+, Cr3 + and Fe3 + metal ions. Orient J Chem. 2024;40:428–36. https://doi.org/10.13005/ojc/400214 .
doi: 10.13005/ojc/400214
Pal R, Chattaraj PK. Chemical reactivity from a conceptual density functional theory perspective. J Indian Chem Soc. 2021;98:100008. https://doi.org/10.1016/j.jics.2021.100008 .
doi: 10.1016/j.jics.2021.100008
Deghady AM, Hussein RK, Alhamzani AG, Mera A. Density functional theory and molecular docking investigations of the chemical and antibacterial activities for 1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one. Molecules. 2021;26(12):3631. https://doi.org/10.3390/molecules26123631 .
doi: 10.3390/molecules26123631 pubmed: 34198585
Lee H, An S, Kim S, Jeon B, Kim M, Kim IS. Readily functionalizable and stabilizable polymeric particles with controlled size and morphology by electrospray. Sci Rep. 2018;8:15725. https://doi.org/10.1038/s41598-018-34124-0 .
doi: 10.1038/s41598-018-34124-0 pubmed: 30356115
Haider A, Haider S, Kang I. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11:1165–88. https://doi.org/10.1016/j.arabjc.2015.11.015 .
doi: 10.1016/j.arabjc.2015.11.015
Ksapabutr B, Chalermkiti T, Panapoy M. Effect of nozzle shapes on the formation of taylor cone and the oscillation of fibers during electrospinning process. Chiang Mai Uni J. 2005;4:115–9.
Boda SK, Li X, Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: a review. J Aerosol Sci. 2018;125:164–81. https://doi.org/10.1016/j.jaerosci.2018.04.002 .
doi: 10.1016/j.jaerosci.2018.04.002 pubmed: 30662086 pmcid: 6333098
Jaworek A, Krupa A. Classification of the modes of EHD spraying. J Aerosol Sci. 1999;30:873–93. https://doi.org/10.1016/S0021-8502(98)00787-3 .
doi: 10.1016/S0021-8502(98)00787-3
Gañán-Calvo AM, López-Herrera JM, Herrada MA, Ramos A, Montanero JM. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci. 2018;125:32–56. https://doi.org/10.1016/j.jaerosci.2018.05.002 .
doi: 10.1016/j.jaerosci.2018.05.002
Essa D, Kondiah PPD, Choonara YE, Pillay V. The design of poly(lactide-co-glycolide) nanocarriers for medical applications. Front Bioeng Biotechnol. 2020;8(48). https://doi.org/10.3389/fbioe.2020.00048 .
Tanaka M, Ochi A, Sasai A, Tsujimoto H, Kobara H, Yamamoto H, et al. Biodegradable PLGA microsphere formation mechanisms in electrosprayed liquid droplets. Kona Powder Part J. 2022;39:251–61. https://doi.org/10.14356/kona.2022018 .
doi: 10.14356/kona.2022018
Ibili H, Dasdemir M. Investigation of electrohydrodynamic atomization (electrospraying) parameters’ effect on formation of poly(lactic acid) nanoparticles. J Mater Sci. 2019;54. https://doi.org/10.1007/s10853-019-03899-6 .
Ahmad Z, Zhang HB, Farook U, Edirisinghe M, Stride E, Colombo P. Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. J Royal Soc Interface. 2008;5:1255–61. https://doi.org/10.1098/rsif.2008.0247 .
doi: 10.1098/rsif.2008.0247
Ahmad Z, Thian ES, Huang J, Edirisinghe MJ, Best SM, Jayasinghe SN, et al. Deposition of nano-hydroxyapatite particles utilising direct and transitional electrohydrodynamic processes. J Mater Sci Mater Med. 2008;19:3093–104. https://doi.org/10.1007/s10856-008-3436-z .
doi: 10.1007/s10856-008-3436-z pubmed: 18392668
Rezvanpour A, Wang C. The effects of auxiliary electric field within the electrohydrodynamic atomization encapsulation chamber on particle size, morphology and collection efficiency. Chem Eng J. 2014;239:8–18. https://doi.org/10.1016/j.cej.2013.10.093 .
doi: 10.1016/j.cej.2013.10.093
Zhang Z, Wang X, Zhu R, Wang Y, Li B, Ma Y, et al. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. Polym Sci Ser B. 2016;58:720–9. https://doi.org/10.1134/S1560090416060191 .
doi: 10.1134/S1560090416060191
Lin G, Zhang X, Kumar S, Mark J. Improved hydrophilicity from poly(ethylene glycol) in amphiphilic conetworks with poly(dimethylsiloxane). Silicon. 2009;1:173–81. https://doi.org/10.1007/s12633-009-9011-5 .
doi: 10.1007/s12633-009-9011-5
Zhang X, Wang L, Tao H, Sun Y, Yang H, Lin B. The influences of poly (ethylene glycol) chain length on hydrophilicity, oxygen permeability, and mechanical properties of multicomponent silicone hydrogels. Colloid Polym Sci. 2019;297(1). https://doi.org/10.1007/s00396-019-04544-z .
Sutariya V, Tur J, Kelly S, Halasz K, Chapalamadugu K, Nimbalkar R, et al. Nano-drug delivery platform for glucocorticoid use in skeletal muscle injury. Can J Physiol Pharmacol. 2018;96. https://doi.org/10.1139/cjpp-2017-0795 .
González-Fernández D, Torneiro M, Lazzari M. Some guidelines for the synthesis and melting characterization of azide poly(ethylene glycol) derivatives. Polymers. 2020;12(6):1269. https://doi.org/10.3390/polym12061269 .
doi: 10.3390/polym12061269 pubmed: 32498252
Li R, Song Y, Fouladian P, Arafat M, Chung R, Kohlhagen J, et al. Three-dimensional printing of curcumin-loaded biodegradable and flexible scaffold for intracranial therapy of glioblastoma multiforme. Pharmaceutics. 2021;13(4):471. https://doi.org/10.3390/pharmaceutics13040471 .
doi: 10.3390/pharmaceutics13040471 pubmed: 33807243 pmcid: 8065414
Ji P, Lu D, Zhang S, Zhang W, Wang C, Wang H. Modification of poly(Ethylene 2,5-furandicarboxylate) with poly(ethylene glycol) for biodegradable copolyesters with good mechanical properties and spinnability. Polymers. 2019;11(12):2105. https://doi.org/10.3390/polym11122105 .
doi: 10.3390/polym11122105 pubmed: 31847424 pmcid: 6960744
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, et al. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep. 2020;10:14188–0. https://doi.org/10.1038/s41598-020-71129-0 .
doi: 10.1038/s41598-020-71129-0 pubmed: 32843673 pmcid: 7447811
Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102:1069–79. https://doi.org/10.1002/qua.20469 .
doi: 10.1002/qua.20469
Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9. https://doi.org/10.1039/C5RA11842E .
doi: 10.1039/C5RA11842E
Bantz C, Koshkina O, Lang T, Galla H, Kirkpatrick CJ, Stauber RH, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5:1774–86. https://doi.org/10.3762/bjnano.5.188 .
doi: 10.3762/bjnano.5.188 pubmed: 25383289 pmcid: 4222438
Paul DR. Elaborations on the higuchi model for drug delivery. Int J Pharm. 2011;418:13–7. https://doi.org/10.1016/j.ijpharm.2010.10.037 .
doi: 10.1016/j.ijpharm.2010.10.037 pubmed: 21034800

Auteurs

Amna Ali (A)

Leicester School of Pharmacy, De Montfort University, Leicester, UK.

Saman Zafar (S)

Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.

Manoochehr Rasekh (M)

College of Engineering, Design and Physical Sciences, Brunel University of London, London, UK.

Tahir Ali Chohan (TA)

Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan.

Francesca Pisapia (F)

The Biosphere, Drayman Helix,, Newcells Biotech, South St., NE4 5BX, Newcastle upon Tyne, UK.

Neenu Singh (N)

Leicester School of Pharmacy, De Montfort University, Leicester, UK.

Omar Qutachi (O)

Leicester School of Pharmacy, De Montfort University, Leicester, UK.

Muhammad Sohail Arshad (MS)

Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan. Sohail_arshad79@yahoo.com.

Zeeshan Ahmad (Z)

Leicester School of Pharmacy, De Montfort University, Leicester, UK. zahmad@dmu.ac.uk.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Curcumin Spinal Cord Injuries Humans Animals Neural Stem Cells
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH