Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates.
Animals
Bacteria
/ classification
Bacteroides
/ enzymology
Clostridiales
/ enzymology
Crystallography, X-Ray
Diet
Feces
/ chemistry
Female
Gastrointestinal Microbiome
Humans
Male
Metagenomics
Mice
Mice, Inbred C57BL
Neuraminic Acids
/ metabolism
Neuraminidase
/ genetics
Polysaccharides
/ chemistry
Red Meat
/ analysis
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
16
01
2019
accepted:
16
08
2019
pubmed:
25
9
2019
medline:
8
7
2020
entrez:
25
9
2019
Statut:
ppublish
Résumé
Dietary habits have been associated with alterations of the human gut resident microorganisms contributing to obesity, diabetes and cancer
Identifiants
pubmed: 31548686
doi: 10.1038/s41564-019-0564-9
pii: 10.1038/s41564-019-0564-9
pmc: PMC6879853
mid: NIHMS1537675
doi:
Substances chimiques
Neuraminic Acids
0
Polysaccharides
0
N-glycolylneuraminic acid
1113-83-3
Neuraminidase
EC 3.2.1.18
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2082-2089Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM032373
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008806
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).
pubmed: 28824167
Mann, N. Dietary lean red meat and human evolution. Eur. J. Nutr. 39, 71–79 (2000).
pubmed: 10918988
Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, 1–11 (2017).
Alisson-Silva, F., Kawanishi, K. & Varki, A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol. Aspects Med. 51, 16–30 (2016).
pubmed: 27421909
pmcid: 5035214
Samraj, A. N. et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl Acad. Sci. USA 112, 542–547 (2015).
pubmed: 25548184
Tangvoranuntakul, P. et al. Human uptake and incorporation of an immunogenic non-human dietary sialic acid. Proc. Natl Acad. Sci. USA 100, 12045–12050 (2003).
pubmed: 14523234
Samraj, A. N., Laubli, H., Varki, N. & Varki, A. Involvement of a non-human sialic acid in human cancer. Front. Oncol. 4, 1–13 (2014).
Varki, A. Uniquely human evolution of sialic acid genetics and biology. Proc. Natl Acad. Sci. USA 107, 8939–8946 (2010).
pubmed: 20445087
Dhar, C., Sasmal, A. & Varki, A. From ‘serum sickness’ to ‘xenosialitis’: past, present, and future significance of the non-human sialic acid Neu5Gc. Front. Immunol. 10, 807 (2019).
pubmed: 31057542
pmcid: 6481270
Almagro-Moreno, S. & Boyd, E. F. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect. Immun. 77, 3807–3816 (2009).
pubmed: 19564383
pmcid: 2738016
McDonald, N. D., Lubin, J.-B., Chowdhury, N. & Boyd, E. F. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo. MBio 7, e02237–15 (2016).
pubmed: 27073099
pmcid: 4959520
Lewis, A. L. & Lewis, W. G. Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell. Microbiol. 14, 1174–1182 (2012).
pubmed: 22519819
Kawanishi, K. et al. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc. Natl Acad. Sci. USA 116, 16036–16045 (2019).
pubmed: 31332008
Banda, K., Gregg, C. J., Chow, R., Varki, N. M. & Varki, A. Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 287, 28852–28864 (2012).
pubmed: 22692204
pmcid: 3436511
Almagro-Moreno, S. & Boyd, E. F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 9, 118 (2009).
pubmed: 19470179
pmcid: 2693436
Almagro-Moreno, S. & Boyd, E. F. Bacterial catabolism of non-ulosonic (sialic) acid and fitness in the gut. Gut Microbes 1, 45–50 (2010).
pubmed: 21327116
pmcid: 3035139
Li, J. & McClane, B. A. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialyated host macromolecules (mucin) or Caco-2 cells. Infect. Immun. 86, e00547–17 (2018).
pubmed: 29203541
pmcid: 5778372
Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624 (2015).
pubmed: 26154892
pmcid: 4510645
Kim, S., Oh, D. B., Kang, H. A. & Kwon, O. Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 91, 1–15 (2011).
pubmed: 21544654
Juge, N., Tailford, L. & Owen, C. D. Sialidases from gut bacteria: a mini-review. Biochem. Soc. Trans. 44, 166–175 (2016).
pubmed: 26862202
pmcid: 4747158
Chokhawala, H. A., Yu, H. & Chen, X. High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries. Chembiochem 8, 194–201 (2007).
pubmed: 17195254
pmcid: 2610223
Huang, Y. L., Chassard, C., Hausmann, M., Von Itzstein, M. & Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6, 8141 (2015).
pubmed: 26303108
pmcid: 4560832
Hedlund, M. et al. N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27, 4340–4346 (2007).
pubmed: 17420276
pmcid: 1900035
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).
pubmed: 22572875
pmcid: 3463488
Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).
pubmed: 27893703
Huang, L. et al. DbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).
pubmed: 30053267
Owen, C. D. et al. Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat. Commun. 8, 2196 (2017).
pubmed: 29259165
pmcid: 5736709
Inoue, S. et al. A unique sialidase that cleaves the Neu5Gcα2→5-OglycolylNeu5Gc linkage: comparison of its specificity with that of three microbial sialidases toward four sialic acid dimers. Biochem. Biophys. Res. Commun. 280, 104–109 (2001).
pubmed: 11162485
Davies, L. R. L. et al. Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J. Biol. Chem. 287, 28917–28931 (2012).
pubmed: 22692207
pmcid: 3436535
Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter–gatherers of Tanzania. Science 357, 802–805 (2017).
pubmed: 28839072
pmcid: 5891123
Schnorr, S. L. et al. Gut microbiome of the Hadza hunter–gatherers. Nat. Commun. 5, 3654 (2014).
pubmed: 24736369
pmcid: 3996546
Wood, P. L., Khan, M. A. & Moskal, J. R. Neurochemical analysis of amino acids, polyamines and carboxylic acids: GC–MS quantitation of tBDMS derivatives using ammonia positive chemical ionization. J. Chromatogr. B 831, 313–319 (2006).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
pubmed: 21903629
pmcid: 3198573
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430
pmcid: 5411777
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
pubmed: 26336640
pmcid: 4556158
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477
pmcid: 4484387
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).
Li, Y. et al. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol. Biosyst. 7, 1060–1072 (2011).
pubmed: 21206954
pmcid: 3114945
Bill Cai, T., Lu, D., Landerholm, M. & Wang, P. G. Sialated diazeniumdiolate: a new sialidase-activated nitric oxide donor. Org. Lett. 6, 4203–4205 (2004).
pubmed: 15524443
Ercégovic, T. & Magnusson, G. Highly stereoselective α-sialylation. Synthesis of GM3-saccharide and a bis-sialic acid unit. J. Org. Chem. 60, 3378–3384 (1995).
Numata, M., Sugimoto, M., Shibayama, S. & Ogawa, T. A total synthesis of hematoside, α-NeuGc-(2→3)-β-Gal-(1→4)-β-Glc-(1→1)-Cer. Carbohydr. Res. 174, 73–85 (1988).
pubmed: 3378233
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
pubmed: 21460445
Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D. 62, 72–82 (2006).
pubmed: 16369096
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. 67, 235–242 (2011).
pubmed: 21460441
Kabsch, W. XDS. Acta Crystallogr. D. 66, 125–132 (2010).
pubmed: 20124692
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).
pubmed: 19770504
Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities—from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).
pubmed: 25935300
Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).
pubmed: 29599459
pmcid: 6059367
Zuñiga, C., Zaramela, L. & Zengler, K. Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 (2017).
pubmed: 28925555
pmcid: 5658597
Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011).
pubmed: 21886097
pmcid: 3319681