Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: A Report of the AAPM TG-203
cardiac implantable electronic devices (CIED)
device malfunction
implantable cardiac pacemakers (ICP)
implantable cardioverter-defibrillators (ICD)
patient management
radiation damage
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
04
04
2019
revised:
16
07
2019
accepted:
28
08
2019
pubmed:
2
10
2019
medline:
15
4
2020
entrez:
2
10
2019
Statut:
ppublish
Résumé
Managing radiotherapy patients with implanted cardiac devices (implantable cardiac pacemakers and implantable cardioverter-defibrillators) has been a great practical and procedural challenge in radiation oncology practice. Since the publication of the AAPM TG-34 in 1994, large bodies of literature and case reports have been published about different kinds of radiation effects on modern technology implantable cardiac devices and patient management before, during, and after radiotherapy. This task group report provides the framework that analyzes the potential failure modes of these devices and lays out the methodology for patient management in a comprehensive and concise way, in every step of the entire radiotherapy process.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e757-e788Informations de copyright
© 2019 American Association of Physicists in Medicine.
Références
Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB. Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Med Phys. 1994;21:85-90.
Last A. Radiotherapy in patients with cardiac. Br J Radiol. 1998;71:4-10.
Niehaus M, Tebbenjohanns J. Electromagnetic interference in patients with implanted pacemakers or cardioverter-defibrillators. Heart. 2001;86:246-248.
Mouton J, Haug R, Bridier A, Dodinot B, Eschwege F. Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol. 2002;47:2879-2893.
Solan A, Solan M, Bednarz G, Goodkin M. Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:897-904.
Hurkmans CW, Scheepers E, Springorum BGF, Uiterwaal H. Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2005;63:282-289.
Sundar S, Symonds R, Deehan C. Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev. 2005;31:474-486.
Gossman MS, Graves-Calhoun AR, Wilkinson JD. Establishing radiation therapy treatment planning effects involving implantable pacemakers and implantable cardioverter-defibrillators. J Appl Clin Med Phys. 2010;11:33-45.
Oshiro Y, Sugahara S, Noma M, et al. Proton beam therapy interference with implanted cardiac pacemakers. Int J Radiat Oncol Biol Phys. 2008;72:723-727.
Gelblum DY, Amols H. Implanted cardiac defibrillator care in radiation oncology patient population. Int J Radiat Oncol Biol Phys. 2009;73:1525-1531.
Bradley PD, Normand E. Single event upsets in implantable cardioverter defibrillators. Nucl Sci IEEE Trans. 1998;45:2929-2940.
Raitt MH, Stelzer KJ, Laramore GE, et al. Runaway pacemaker during high-energy neutron radiation therapy. Chest. 1994;106:955-957.
McCollough CH, Zhang J, Primak AN, Clement WJ, Buysman JR. Effects of CT irradiation on implantable cardiac rhythm management devices. Radiology. 2007;243:766-774.
Yamaji S, Imai S, Saito F, Yagi H, Kushiro T, Uchiyama T. Does high-power computed tomography scanning equipment affect the operation of pacemakers?. Circ J. 2006;70:190-197.
ECRI organization. CT scans can affect the operation of implanted electronic devices. Health Devices. 2007;36:136-138.
Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol. 2004;43:1315-1324.
Zweng A, Schuster R, Hawlicek R, Weber HS. Life-threatening pacemaker dysfunction associated with therapeutic radiation: a case report. Angiology. 2008;60:509-512.
Kobayashi H, Shiraishi K, Tsuchiya H, et al. Soft errors in SRAM devices induced by high energy neutrons, thermal neutrons and alpha particles. Electron Devices Meeting, IEDM '02. 2002.
Lester JF, Evans LM, Yousef Z, Penney A, Brown PN, Perks R. A national audit of current cardiac device policies from radiotherapy centres across the UK. Clin Oncol. 2014;26:45-50.
Soejima T, Yoden E, Nishimura Y, et al. Radiation therapy in patients with implanted cardiac pacemakers and implantable cardioverter defibrillators: a prospective survey in Japan. J Radiat Res. 2011;52:516-521.
Gossman MS, Wilkinson JD, Mallick A. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers. Med Dosim. 2014;39:320-324.
Indik JH, Gimbel JR, Abe H, et al. HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm. 2017;14:e97-e153.
Kerkmeijer LGW, Fuller CD, Verkooijen HM, et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol. 2016;6:1-6.
Myers D. What happens to semiconductors in a nuclear environment. Electronics. 1978;51:131-133.
Katzenberg CA, Marcus FI, Heusinkveld RS, Mammana RB. Pacemaker failure due to radiation therapy. Pacing Clin Electrophysiol. 1982;5:156-159.
Pourhamidi AH. Radiation effect on implanted pacemakers. Chest. 1983;84:499-500.
Quertermous T, Megahy MS, Das Gupta DS, Griem ML. Pacemaker failure resulting from radiation damage. Radiology. 1983;148:257-258.
Lewin AA, Serago CF, Schwade JG, Abitbol AA, Margolis SC. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication. Int J Radiat Oncol Biol Phys. 1984;10:1967-1969.
Elders J, Kunze-Busch M, Jan Smeenk R, Smeets JLRM. High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors. Europace. 2013;15:60-65.
Maxted KJ. The effect of therapeutic x-radiation on a sample of pacemaker generators. Phys Med Biol. 1984;29:1143-1146.
Venselaar JL. The effects of ionizing radiation on eight cardiac pacemakers and the influence of electromagnetic interference from two linear accelerators. Radiother Oncol. 1985;3:81-87.
Venselaar JL, Van Kerkoerle HL, Vet AJ. Radiation damage to pacemakers from radiotherapy. Pacing Clin Electrophysiol. 1987;10:538-542.
Rodriguez F, Filimonov A, Henning A, Coughlin C, Greenberg M. Radiation-induced effects in multiprogrammable pacemakers and implantable defibrillators. Pacing Clin Electrophysiol. 1991;14:2143-2153.
Zaremba T, Jakobsen AR, Thøgersen AM, Oddershede L, Riahi S. The effect of radiotherapy beam energy on modern cardiac devices: an in vitro study. Europace. 2013;16:612-616.
Hauser RG, Hayes DL, Epstein AE, et al. Multicenter experience with failed and recalled implantable cardioverter-defibrillator pulse generators. Heart Rhythm. 2006;3:640-644.
Lelakowski J, Majewski J, Bednarek J, Malecka B, Zabek A. Pacemaker dependency after pacemaker implantation. Cardiology Journal. 2007;14:83-86.
Korantzopoulos P, Letsas KP, Grekas G, Goudevenos JA. Pacemaker dependency after implantation of electrophysiological devices. Europace. 2009;11:1151-1155.
Levin PA. Letter to the Editor-Pacemaker dependency after pacemaker implantation. Cardiol J. 2007;14:318-320.
Calfee RV. Therapeutic radiation and pacemakers. Pacing Clin Electrophysiol. 1982; 5:160-161.
Ma TP, Dressendorfer PV. Ionizing Radiation Effects in MOS Devices and Circuits. New York, NY: Wiley; 1989.
Little FA. Pacemakers in radiotherapy. Clin Oncol. 1994;6:211-212.
Souliman SK, Christie J. Pacemaker failure induced by radiotherapy. Pacing Clin Electrophysiol. 1994;17:270-273.
Gomez DR, Poenisch F, Pinnix CC, et al. Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors. Int J Radiat Oncol Biol Phys. 2013;87:570-575.
Brenner DJ, Hall EJ. Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother Oncol. 2008;86:165-170.
Brooks C, Mutter M. Pacemaker failure associated with therapeutic radiation. Am J Emerg Med. 1988;6:591-593.
Hudson F, Coulshed D, D'Souza E, Baker C. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol. 2010;54:53-61.
Mollerus M, Naslund L, Lipinski M, Meyer A, Libey B, Dornfeld K. Radiation tolerance of contemporary implantable cardioverter-defibrillators. J Interv Card Electrophysiol. 2014;39:171-175.
Hurkmans CW, Scheepers E, Springorum BGF, Uiterwaal H. Influence of radiotherapy on the latest generation of pacemakers. Radiother Oncol. 2005;76:93-98.
Uiterwaal H, Springorum BG, Scheepers E, de Ruiter GS, Hurkmans CW. Interference detection in implantable defibrillators induced by therapeutic radiation therapy. Neth Heart J. 2006;14:330-334.
Kry SF, Salehpour M, Titt U, White RA, Stovall M, Monte Followill D. Carlo study shows no significant difference in second cancer risk between 6- and 18-MV intensity-modulated radiation therapy. Radiother Oncol. 2009;91:132-137.
Fontenot J, Taddei P, Zheng Y, Mirkovic D, Jordan T, Newhauser W. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer. Phys Med Biol. 2008;53:1677-1688.
Tondato F, Ng DW, Srivathsan K, Altemose GT, Halyard MY, Scott LR. Radiotherapy-induced pacemaker and implantable cardioverter defibrillator malfunction [published online ahead of print 2009/05/08]. Expert Rev Med Devices. 2009;6:243-249.
Koivunoro H, Seren T, Hyvonen H, et al. Epithermal neutron beam interference with cardiac pacemakers. Appl Radiat Isot. 2011;69:1904-1906.
Hurkmans C, Schmeets I, Uiterwaal H. In regard to Solan et al.: Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy (Int J Radiat Oncol Biol Phys 2004;59:897-904). Int J Radiat Oncol Biol Phys. 2004;60:1662-1663.
Franco L, Gomez F, Iglesias A, et al.SEUs on commercial SRAM induced by low energy neutrons produced at a clinical linac facility. European Congress RADECS 2005Cap d'Agde, France; 2005.
Wilkinson JD, Bounds C, Brown T, Gerbi BJ, Peltier J. Cancer-radiotherapy equipment as a cause of soft errors in electronic equipment. Device Mater Reliab IEEE Trans. 2005;5:449-451.
Grant JD, Jensen GL, Tang C, et al. Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices: Clinical incidence and predictors. JAMA Oncol. 2015;1:624-632.
Johnston AH, Hughlock BW, Baze MP, Plaag RE. The effect of temperature on single-particle latchup. Nuc Sci IEEE Trans. 1991;38:1435-1441.
Howell RM, Kry SF, Burgett E, Hertel NE, Followill DS. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators. Med Phys. 2009;36:4027-4038.
Followill DS, Stovall MS, Kry SF, Ibbott GS. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators. J Appl Clin Med Phys. 2003;4:189-194.
Sánchez-Doblado F, Domingo C, Gómez F, et al. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector. Phys Med Biol. 2012;57:6167.
Reft CS, Runkel-Muller R, Myrianthopoulos L. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT. Med Phys. 2006;33:3734-3742.
Kry SF, Howell RM, Salehpour M, Followill DS. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy. Med Phys. 2009;36:1244.
Lin J-P, Chu T-C, Lin S-Y, Liu M-T. The measurement of photoneutrons in the vicinity of a Siemens Primus linear accelerator. Appl Radiat Isot. 2001;55:315-321.
Cardenas CE, Nitsch PL, Kudchadker RJ, Howell RM, Kry SF. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators. J Appl Clin Med Phys. 2016;17:442-455.
Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol. 2008;53:R193-R241.
Zheng Y, Newhauser W, Fontenot J, Taddei P, Mohan R. Monte Carlo study of neutron dose equivalent during passive scattering proton therapy. Phys Med Biol. 2007;52:4481-4496.
Ferrara T, Baiotto B, Malinverni G, et al. Irradiation of pacemakers and cardio-defibrillators in patients submitted to radiotherapy: a clinical experience. Tumori. 2010;96:76-83.
Stovall M, Blackwell CR, Cundiff J, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys. 1995;22:63-82.
Prisciandaro JI, Makkar A, Fox CJ, et al. Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy. J Appl Clin Med Phys. 2015;16:254-263.
FDA Preliminary Public Health Notification: Possible Malfunction of Electronic Medical Devices Caused by Computed Tomography (CT) Scanning. Washington, D.C.: U.S. Food and Drug Administration; 2008:1.
Kirova YM, Menard J, Chargari C, Mazal A, Kirov K. Case study thoracic radiotherapy in an elderly patient with pacemaker: the issue of pacing leads. Med Dosim. 2012;37:192-194.
Hayes DL, Wang PJ, Reynolds DW, et al. Interference with cardiac pacemakers by cellular telephones. New Engl J Med. 1997;336:1473-1479.
Hussein A, Abutaleb A, Jeudy J, et al. Safety of computed tomography in patients with cardiac rhythm management devices. J Am Coll Cardiol. 2014;63:1769-1775.
Diederich S, Lenzen H. Radiation exposure associated with imaging of the chest: comparison of different radiographic and computed tomography techniques. Cancer. 2000;89:2457-2460.
Kan MW, Leung LH, Wong W, Lam N. Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol. 2008;70:272-279.
Keall PJ, Starkschall G, Shukla H, et al. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49:2053-2067.
Moore CJ, Amer A, Marchant T, et al. Developments in and experience of kilovoltage X-ray cone beam image-guided radiotherapy. Br J Radiol. 2006;79:S66-S78.
Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol. 2004;14:91-100.
Ding GX, Alaei P, Curran B, et al. Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM Therapy Physics Committee Task Group 180. Med Phys. 2018;45:e84-e99.
Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34:4041-4063.
Endo M, Nishizawa K, Iwai K, et al. Image characteristics and effective dose estimation of a cone beam CT using a video-fluoroscopic system. Nucl Sci IEEE Trans. 1999;46:686-690.
Faddegon BA, Wu V, Pouliot J, Gangadharan B, Bani-Hashemi A. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys. 2008;35:5777-5786.
Gayou O, Parda DS, Johnson M, Miften M. Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys. 2007;34:499-506.
Morin O, Gillis A, Descovich M, et al. Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys. 2007;34:1819-1827.
Miften M, Gayou O, Reitz B, Fuhrer R, Leicher B, Parda DS. IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys. 2007;34:3760-3767.
Flynn RT, Hartmann J, Bani-Hashemi A, et al. Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography. Med Phys. 2009;36:2181-2192.
Meeks SL, Harmon JF Jr, Langen KM, Willoughby TR, Wagner TH, Kupelian PA. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys. 2005;32:2673-2681.
Baikoussis NG, Apostolakis E, Papakonstantinou NA, Sarantitis I, Dougenis D. Safety of magnetic resonance imaging in patients with implanted cardiac prostheses and metallic cardiovascular electronic devices. The Annals of thoracic surgery. 2011;91:2006-2011.
Cohen JD, Costa HS, Russo RJ. Determining the risks of magnetic resonance imaging at 1.5 tesla for patients with pacemakers and implantable cardioverter defibrillators. Am J Cardiol. 2012;110:1631-1636.
Zikria JF, Machnicki S, Rhim E, Bhatti T, Graham RE. MRI of patients with cardiac pacemakers: a review of the medical literature. Am J Roentgenol. 2011;196:390-401.
Levine GN, Gomes AS, Arai AE, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices. Circulation. 2007;116:2878-2891.
Jung W, Zvereva V, Hajredini B, Jäckle S. Safe magnetic resonance image scanning of the pacemaker patient: current technologies and future directions. Europace. 2012;14:631-637.
Abner AL, Meskell P, Carrozza J, Boiselle P, Holupka EJ. Dose to cardiac pacemakers and implanted defibrillators from beta and gamma coronary artery brachytherapy. Int J Radiat Oncol Biol Phys. 2002;54:301.
Steidley KD, Steidley DE. Pacemaker/ICD Irradiation Policies in Radiation Oncology. In https://www.ipen.br/biblioteca/cd/irpa/2004/files/4e26.pdf. 2004:1-7.
Croshaw R, Lappinen E, Julian T, Trombetta M. Avoiding mastectomy: accelerated partial breast irradiation for breast cancer patients with pacemakers or defibrillators. Ann Surg Oncol. 2011;18:3500-3505.
Jacob D, Chen H, Simpson L. SU-E-T-596: high dose brachytherapy planning of a left breast cancer patient with in situ pacemaker. Med Phys. 2011;38:3626.
Kim Y, Arshoun Y, Trombetta MG. Pacemaker/implantable cardioverter-defibrillator dose in balloon high-dose-rate brachytherapy for breast cancer treatment. Brachytherapy. 2012;11:380-386.
Sung W, Kim S, Kim J-i, et al. Dosimetric perturbations due to an implanted cardiac pacemaker in MammoSite® treatment. Med Phys. 2012;39:6185-6191.
Keshtgar MR, Eaton DJ, Reynolds C, et al. Pacemaker and radiotherapy in breast cancer: is targeted intraoperative radiotherapy the answer in this setting? Radiat Oncol. 2012;7:1-4.
Kase KR, Svensson GK. Head scatter data for several linear accelerators (4-18 MV). Med Phys. 1986;13:530-532.
Vanhavere F, Huyskens D, Struelens L. Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator. Radiat Prot Dosim. 2004;110:607-612.
Kry SF, Titt U, Pönisch F, et al. A Monte Carlo model for calculating out-of-field dose from a Varian 6MV beam. Med Phys. 2006;33:4405-4413.
Howell RM, Hertel NE, Wang Z, Hutchinson J, Fullerton GD. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6MV, 15MV, and 18MV beam energies. Med Phys. 2006;33:360-368.
Kry SF, Titt U, Followill D, et al. A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy. Med Phys. 2007;34:3489-3499.
Starkschall G, George FJS, Zellmer D. Surface dose for megavoltage photon beams outside the treatment field. Med Phys. 1983;10:906-910.
Mao X, Kase K, Liu J, Nelson W, Kleck J, Johnsen S. Neutron sources in the Varian Clinac 2100C/2300C medical accelerator calculated by the EGS4 code. Health Phys. 2100C;72:524-529.
Hashii H, Hashimoto T, Okawa A, et al. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2013;85:840-845.
d'Errico F, Luszik-Bhadra M, Nath R, Siebert BRL, Wolf U. Depth dose-equivalent and effective energies of photoneutrons generated by 6-18 MV X-ray beams for radiotherapy. Health Phys. 2001;80:4-11.
Mesoloras G, Sandison GA, Stewart RD, Farr JB, Hsi WC. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med Phys. 2006;33:2479-2490.
Kry SF, Johnson JL, White RA, Howell RM, Kudchadker RJ, Gillin MT. Neutron-induced electronic failures around a high-energy linear accelerator. Med Phys. 2011;38:34-39.
Hoecht S, Rosenthal P, Sancar D, et al. Implantable cardiac defibrillators may be damaged by radiation therapy. J Clin Oncol. 2002;20:2212-2213.
Thomas D, Becker R, Katus HA, Schoels W, Karle CA. Radiation therapy-induced electrical reset of an implantable cardioverter defibrillator device located outside the irradiation field. J Electrocardiol. 2004;37:73-74.
Nemec J. Runaway implantable defibrillator-a rare complication of radiation therapy. Pacing Clin Electrophysiol. 2007;30:716-718.
Nibhanupudy JR, de Jesus MA, Fujita M, Goldson AL. Radiation dose monitoring in a breast cancer patient with a pacemaker: a case report. J Natl Med Assoc. 2001;93:278-281.
John J, Kaye GC. Shock coil failure secondary to external irradiation in a patient with implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 2004;27:690-691.
Sepe S, Schaffer P, Krimmel K, Schaffer M. Irradiation treatment of laryngeal cancer in a patient with an implantable cardioverter-defibrillator (ICD). Onkologie. 2007;30:378-380.
Lau DH, Wilson L, Stiles MK, et al. Defibrillator reset by radiotherapy. Int J Cardiol. 2008;130:e37-e38.
Munshi A, Wadasadawala T, Kumar Sharma P, et al. Radiation therapy planning of a breast cancer patient with in situ pacemaker-challenges and lessons. Acta Oncol. 2008;47:255-260.
DiBiase S, Eagen J, Dufendach C. The influence of intensity modulated radiation therapy (IMRT) on cardiac devices in patients undergoing treatment for prostate cancer. Int J Radiat Oncol Biol Phys. 2011;81:2.
Dasgupta T, Barani IJ, Roach M. Successful radiation treatment of anaplastic thyroid carcinoma metastatic to the right cardiac atrium and ventricle in a pacemaker-dependent patient. Radiat Oncol. 2011;6:16.
Tsekos A, Momm F, Brunner M, Guttenberger R. The cardiac pacemaker patient-might the pacer be directly irradiated?. Acta Oncol. 2000;39:881-883.
Kapa S, Fong L, Blackwell CR, Herman MG, Schomberg PJ, Hayes DL. Effects of scatter radiation on ICD and CRT function. Pacing Clin Electrophysiol. 2008;31:727-732.
Antolak JA, Strom EA. Fetal dose estimates for electron-beam treatment to the chest wall of a pregnant patient. Med Phys. 1998;25:2388-2391.
Chow JC, Grigorov GN. Peripheral dose outside applicators in electron beams. Phys Med Biol. 2006;51:N231-N240.
Yeboah C, Karotki A, Hunt D, Holly R. Quantification and reduction of peripheral dose from leakage radiation on Siemens primus accelerators in electron therapy mode. J Appl Clin Med Phys. 2010;11:154-172.
Kaderka R, Schardt D, Durante M, et al. Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Phys Med Biol. 2012;57:5059-2074.
Hashimoto T, Isobe T, Hashii H, et al. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators. Radiat Oncol. 2012;7:10.
Clasie B, Wroe A, Kooy H, et al. Assessment of out-of-field absorbed dose and equivalent dose in proton fields. Med Phys. 2010;37:311-321.
Jarlskog CZ, Lee C, Bolch WE, Xu XG, Paganetti H. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms. Phys Med Biol. 2008;53:693-717.
Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys. 2002;53:244-251.
Kry SF, Bednarz B, Howell RM, et al. AAPM TG 158: measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44:e391-e429.
Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys. 2011;38:2619-2628.
Scarboro SB, Followill DS, Kerns JR, White RA, Kry SF. Energy response of optically stimulated luminescent dosimeters for non-reference measurement locations in a 6 MV photon beam. Phys Med Biol. 2012;57:2505-2515.
Mobit P, Agyingi E, Sandison G. Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams. Radiat Prot Dosimetry. 2006;119:497-499.
Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36:1690-1699.
Howell RM, Scarboro SB, Kry SF, Yaldo DZ. Accuracy of out-of-field dose calculations by a commercial treatment planning system. Phys Med Biol. 2010;55:6999-7008.
Huang JY, Followill DS, Wang XA, Kry SF. Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments. J Appl Clin Med Phys. 2013;14:186-197.
Joosten A, Matzinger O, Jeanneret-Sozzi W, Bochud F, Moeckli R. Evaluation of organ-specific peripheral doses after 2-dimensional, 3-dimensional and hybrid intensity modulated radiation therapy for breast cancer based on Monte Carlo and convolution/superposition algorithms: Implications for secondary cancer risk assessment. Radiother Oncol. 2013;106:33-41.
van der Giessen PH. Peridose, a software program to calculate the dose outside the primary beam in radiation therapy. Radiother Oncol. 2001;58:209-213.
Kry SF, Price M, Followill D, Mourtada F, Salehpour M. The use of LiF (TLD-100) as an out-of-field dosimeter. J Appl Clin Med Phys. 2007;8:169-175.
Kry SF, Starkschall G, Antolak JA, Salehpour M. Evaluation of the accuracy of fetal dose estimates using TG-36 data. Med Phys. 2007;34:1193.
Bednarz B, Xu XG. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys. 2008;35:3054-3061.
Bednarz B, Monte XuXG. Carlo modeling of a 6 and 18 MV Varian Clinac medical accelerator for in-field and out-of-field dose calculations: development and validation. Phys Med Biol. 2009;54:N43-N47.
Edwards CR, Mountford PJ. Near surface photon energy spectra outside a 6 MV field edge. Phys Med Biol. 2004;49:N293-N301.
Chan MF, Song Y, Dauer LT, Li J, Huang D, Burman C. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters. Med Dosim. 2012;37:334-338.
Snow JR, Micka JA, DeWerd LA. Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to 60Co. Med Phys. 2013;40:041711.
Kry SF, Alvarez P, Cygler JE, et al. AAPM TG 191 Clinical Use of Luminescent Dosimeters: TLDs and OSLDs. Med Phys. 2019. https://doi.org/10.1002/mp.13839.
Mendez R, Iniguez MP, Barquero R, et al. Response components of LiF : Mg, Ti around a moderated Am-Be neutron source. Radiat Prot Dosimetry. 2002;98:173-178.
Kerns JR, Kry SF, Sahoo N, Followill DS, Ibbott GS. Angular dependence of the nanoDot OSL dosimeter. Med Phys. 2011;38:3955-3962.
Saini AS, Zhu TC. Dose rate and SDD dependence of commercially available diode detectors. Med Phys. 2004;31:914-924.
Ding GX, Coffey CW. Dosimetric evaluation of the OneDose™ MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures. Med Phys. 2010;37:4880-4885.
Chiu-Tsao ST, Chan MF. Use of new radiochromic devices for peripheral dose measurement: potential in-vivo dosimetry application. Biomed Imaging Intervention J. 2009;5:e16.11-e16.12.
Beddar AS. Plastic scintillation dosimetry and its application to radiotherapy. Radiat Meas. 2006;41:S124-S133.
Carrasco P, Jornet N, Jordi O, et al. Characterization of the Exradin W1 scintillator for use in radiotherapy. Med Phys. 2015;42:297-304.
Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010;55:2155-2166.
Kragl G, Baier F, Lutz S, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Zeitschrift für Medizinische Physik. 2011;21:91-101.
Blais AR, Lederer E, Oliver M, Leszczynski K. Static and rotational step-and-shoot IMRT treatment plans for the prostate: a risk comparison study. Med Phys. 2012;39:1069-1078.
Hurkmans CW, Knegjens JL, Oei BS, et al. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Radiation Oncology. 2012;7:198.
Zecchin M, Severgnini M, Fiorentino A, et al. Management of patients with cardiac implantable electronic devices (CIED) undergoing radiotherapy: a consensus document from Associazione Italiana Aritmologia e Cardiostimolazione (AIAC), Associazione Italiana Radioterapia Oncologica (AIRO), Associazione Italiana Fisica Medica (AIFM). Int J Cardiol. 2018;255:175-183.
Inc MU. Standard Letter, THERAPEUTIC RADIATION [Rev. F, 30-APR 2010].
Chavez MI. Monitoring patients with implanted cardiac rhythm devices receiving radiation therapy. Oncol Nurs Forum. 2009;36:629-632.
Bhandiwad AR, Cummings KW, Crowley M, Woodard PK. Cardiovascular magnetic resonance with an MR compatible pacemaker. J Cardiovasc Magn Reson. 2013;15:18.
Harden SP. MRI conditional pacemakers: the start of a new era. Br J Radiol. 2011;84:773-774.
Wadasadawala T, Pandey A, Agarwal JP, et al. Radiation therapy with implanted cardiac pacemaker devices: a clinical and dosimetric analysis of patients and proposed precautions. Clin Oncol. 2011;23:79-85.
Riley B, Garcia J, Guerrero T. The utilization of a 3-dimensional noncoplanar treatment plan to avoid pacemaker complications. Med Dosim. 2004;29:92-96.
de Bie MK, van Rees JB, Thijssen J, et al. Cardiac device infections are associated with a significant mortality risk. Heart Rhythm. 2012;9:494-498.
Aguilera AL, Volokhina YV, Fisher KL. Radiography of cardiac conduction devices: a comprehensive review. Radiographics. 2011;31:1669-1682.
Coolens C, Childs PJ. Calibration of CT Hounsfield units for radiotherapy treatment planning of patients with metallic hip prostheses: the use of the extended CT-scale. Phys Med Biol. 2003;48:1591-1603.
Frizzell B. Radiation therapy in oncology patients who have a pacemaker or implantable cardioverter-defibrillator. Commun Oncol. 2009;6:469-471.
Reddy K, Cook B, Shaw C, et al. Intact performance of a cochlear implant following radiotherapy in a child with acute lymphoblastic leukemia. Pract Radiat Oncol. 2012;2:233-236.
Klenzner T, Knapp F, Rohner F, et al. Influence of ionizing radiation on nucleus 24 cochlear implants. Otol Neurotol. 2005;26:661-667.
Klenzner T, Lutterbach J, Aschendorff A, Pedersen P, Stecker M, Laszig R. The effect of large single radiation doses on cochlear implant function: implications for radiosurgery. Eur Arch Otorhinolaryngol. 2004;261:251-255.
Ralston A, Stevens G, Mahomudally E, Ibrahim I, Leckie E. Cochlear implants: response to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1999;44:227-231.
Baumann R, Lesinski-Schiedat A, Goldring JE, et al. The influence of ionizing radiation on the CLARION 1.2 cochlear implant during radiation therapy. Am J Otol. 1999;20:50-52.
Lauro C, Miften M, Albano E, Wilkinson C, Liu AK. Intact functioning of intrathecal pain pump receiving radiation therapy. J Clin Case Rep. 2012;2:157.
Wu H, Wang D. Radiation-induced alarm and failure of an implanted programmable intrathecal pump. Clin J Pain. 2007;23:826-828.
Gossman MS, Ketkar A, Liu AK, Olin B. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams. Phys Med Biol. 2012;57:N365-N376.
Mitra D, Ghosh K, Gupta P, Jayanti J, Dev A, Sur P. Radiation dose monitoring in a lung cancer patient with a pacemaker-a case report. Indian J Radiol Imaging. 2006;16:875-877.
Ng DW, Tondato FJ, Ezzel GA, et al. High incidence of radiotherapy-induced malfunction of permanent pacemakers and ICDs: a single center experience. Europace. 2008;10:I101.
Makkar A, Prisciandaro J, Agarwal S, et al. Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function. Heart Rhythm. 2012;9:1964-1968.
Mihailidis DN. In regard to Gomez et al. Int J Radiat Oncol Biol Phys. 2014;88:753.
Mijnheer B, Beddar S, Izewska J, Reft C. In vivo dosimetry in external beam radiotherapy. Med Phys. 2013;40(7):070903.