Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.


Journal

Genesis (New York, N.Y. : 2000)
ISSN: 1526-968X
Titre abrégé: Genesis
Pays: United States
ID NLM: 100931242

Informations de publication

Date de publication:
01 2020
Historique:
received: 19 04 2019
revised: 06 09 2019
accepted: 07 09 2019
pubmed: 2 10 2019
medline: 9 9 2020
entrez: 2 10 2019
Statut: ppublish

Résumé

CRISPR/Cas9-based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)-induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock-ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9-targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock-in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.

Identifiants

pubmed: 31571409
doi: 10.1002/dvg.23340
doi:

Substances chimiques

RNA, Guide 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e23340

Informations de copyright

© 2019 Wiley Periodicals, Inc.

Références

Albadri, S., Del Bene, F., & Revenu, C. (2017). Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods (San Diego, CAL), 121-122, 77-85. http://doi.org/10.1016/j.ymeth.2017.03.005
Armstrong, G. A. B., Liao, M., You, Z., Lissouba, A., Chen, B. E., & Drapeau, P. (2016). Homology directed knockin of point mutations in the Zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One, 11(3), e0150188. http://doi.org/10.1371/journal.pone.0150188
Asakawa, K., & Kawakami, K. (2008). Targeted gene expression by the Gal4-UAS system in zebrafish. Development, Growth & Differentiation, 50(6), 391-399. http://doi.org/10.1111/j.1440-169X.2008.01044.x
Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P., & Del Bene, F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 24(1), 142-153. http://doi.org/10.1101/gr.161638.113
Baraban, M., Anselme, I., Schneider-Maunoury, S., & Giudicelli, F. (2013). Zebrafish embryonic neurons transport messenger RNA to axons and growth cones in vivo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(40), 15726-15734. http://doi.org/10.1523/JNEUROSCI.1510-13.2013
Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., … Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature, 491(7422), 114-118. http://doi.org/10.1038/nature11537
Distel, M., Wullimann, M. F., & Köster, R. W. (2009). Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13365-13370. http://doi.org/10.1073/pnas.0903060106
Gagnon, J. A., Valen, E., Thyme, S. B., Huang, P., Ahkmetova, L., Pauli, A., … Schier, A. F. (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One, 9(5), e98186. http://doi.org/10.1371/journal.pone.0098186
Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., … Concordet, J. P. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 17(1), 148. http://doi.org/10.1186/s13059-016-1012-2
Hatta, K., Bremiller, R., Westerfield, M., & Kimmel, C. B. (1991). Diversity of expression of engrailed-like antigens in zebrafish. Development (Cambridge, England), 112(3), 821-832.
Hatta, K., Tsujii, H., & Omura, T. (2006). Cell tracking using a photoconvertible fluorescent protein. Nature Protocols, 1(2), 960-967. http://doi.org/10.1038/nprot.2006.96
Hisano, Y., Sakuma, T., Nakade, S., Ohga, R., Ota, S., Okamoto, H., … Kawahara, A. (2015). Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Scientific Reports, 5, 8841. http://doi.org/10.1038/srep08841
Hoshijima, K., Jurynec, M. J., & Grunwald, D. J. (2016). Precise editing of the Zebrafish genome made simple and efficient. Developmental Cell, 36(6), 654-667. http://doi.org/10.1016/j.devcel.2016.02.015
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., & Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development (Cambridge, England), 140(24), 4982-4987. http://doi.org/10.1242/dev.099085
Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., … Yeh, J. R. J. (2013). Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One, 8(7), e68708. http://doi.org/10.1371/journal.pone.0068708
Inohaya, K., Yasumasu, S., Araki, K., Naruse, K., Yamazaki, K., Yasumasu, I., … Yamagami, K. (1997). Species-dependent migration of fish hatching gland cells that express astacin-like proteases in common [corrected]. Development, Growth & Differentiation, 39(2), 191-197.
Irion, U., Krauss, J., & Nüsslein-Volhard, C. (2014). Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development (Cambridge, England), 141(24), 4827-4830. http://doi.org/10.1242/dev.115584
Jao, L.-E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13904-13909. http://doi.org/10.1073/pnas.1308335110
Jasin, M., & Haber, J. E. (2016). The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair, 44, 6-16. http://doi.org/10.1016/j.dnarep.2016.05.001
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253-310. http://doi.org/10.1002/aja.1002030302
Kimura, Y., Hisano, Y., Kawahara, A., & Higashijima, S.-I. (2014). Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Scientific Reports, 4, 6545. http://doi.org/10.1038/srep06545
Li, J., Zhang, B.-B., Ren, Y.-G., Gu, S.-Y., Xiang, Y.-H., & Du, J.-L. (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Research, 25(5), 634-637. http://doi.org/10.1038/cr.2015.43
Mashal, R. D., Koontz, J., & Sklar, J. (1995). Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genetics, 9(2), 177-183. http://doi.org/10.1038/ng0295-177
Scott, E. K., & Baier, H. (2009). The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Frontiers in Neural Circuits, 3, 13. http://doi.org/10.3389/neuro.04.013.2009
Shin, J., Chen, J., & Solnica-Krezel, L. (2014). Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development (Cambridge, England), 141(19), 3807-3818. http://doi.org/10.1242/dev.108019
Tabor, K. M., Bergeron, S. A., Horstick, E. J., Jordan, D. C., Aho, V., Porkka-Heiskanen, T., … Burgess, H. A. (2014). Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. Journal of Neurophysiology, 112(4), 834-844. http://doi.org/10.1152/jn.00228.2014
Won, M., & Dawid, I. B. (2017). PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS One, 12(3), e0172802. http://doi.org/10.1371/journal.pone.0172802
Zhang, Y., Huang, H., Zhang, B., & Lin, S. (2016). TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish. Methods in Cell Biology, 135, 107-120. http://doi.org/10.1016/bs.mcb.2016.03.005
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., … Lin, S. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nature Methods, 10(4), 329-331. http://doi.org/10.1038/nmeth.2374

Auteurs

Alexis Eschstruth (A)

Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du développement, Paris, France.

Sylvie Schneider-Maunoury (S)

Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du développement, Paris, France.

François Giudicelli (F)

Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du développement, Paris, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH