Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
Animals
Animals, Genetically Modified
/ genetics
CRISPR-Cas Systems
/ genetics
Gene Editing
/ methods
Gene Knock-In Techniques
/ methods
Gene Targeting
/ methods
Genetic Engineering
/ methods
Genome
/ genetics
Homologous Recombination
/ genetics
Intermediate Filaments
/ genetics
RNA, Guide, Kinetoplastida
/ genetics
Zebrafish
/ genetics
CRISPR/Cas9
genome editing
knock-in
nefma
zebrafish
Journal
Genesis (New York, N.Y. : 2000)
ISSN: 1526-968X
Titre abrégé: Genesis
Pays: United States
ID NLM: 100931242
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
19
04
2019
revised:
06
09
2019
accepted:
07
09
2019
pubmed:
2
10
2019
medline:
9
9
2020
entrez:
2
10
2019
Statut:
ppublish
Résumé
CRISPR/Cas9-based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)-induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock-ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9-targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock-in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.
Substances chimiques
RNA, Guide
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23340Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Albadri, S., Del Bene, F., & Revenu, C. (2017). Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods (San Diego, CAL), 121-122, 77-85. http://doi.org/10.1016/j.ymeth.2017.03.005
Armstrong, G. A. B., Liao, M., You, Z., Lissouba, A., Chen, B. E., & Drapeau, P. (2016). Homology directed knockin of point mutations in the Zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One, 11(3), e0150188. http://doi.org/10.1371/journal.pone.0150188
Asakawa, K., & Kawakami, K. (2008). Targeted gene expression by the Gal4-UAS system in zebrafish. Development, Growth & Differentiation, 50(6), 391-399. http://doi.org/10.1111/j.1440-169X.2008.01044.x
Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P., & Del Bene, F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 24(1), 142-153. http://doi.org/10.1101/gr.161638.113
Baraban, M., Anselme, I., Schneider-Maunoury, S., & Giudicelli, F. (2013). Zebrafish embryonic neurons transport messenger RNA to axons and growth cones in vivo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(40), 15726-15734. http://doi.org/10.1523/JNEUROSCI.1510-13.2013
Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., … Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature, 491(7422), 114-118. http://doi.org/10.1038/nature11537
Distel, M., Wullimann, M. F., & Köster, R. W. (2009). Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13365-13370. http://doi.org/10.1073/pnas.0903060106
Gagnon, J. A., Valen, E., Thyme, S. B., Huang, P., Ahkmetova, L., Pauli, A., … Schier, A. F. (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One, 9(5), e98186. http://doi.org/10.1371/journal.pone.0098186
Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., … Concordet, J. P. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 17(1), 148. http://doi.org/10.1186/s13059-016-1012-2
Hatta, K., Bremiller, R., Westerfield, M., & Kimmel, C. B. (1991). Diversity of expression of engrailed-like antigens in zebrafish. Development (Cambridge, England), 112(3), 821-832.
Hatta, K., Tsujii, H., & Omura, T. (2006). Cell tracking using a photoconvertible fluorescent protein. Nature Protocols, 1(2), 960-967. http://doi.org/10.1038/nprot.2006.96
Hisano, Y., Sakuma, T., Nakade, S., Ohga, R., Ota, S., Okamoto, H., … Kawahara, A. (2015). Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Scientific Reports, 5, 8841. http://doi.org/10.1038/srep08841
Hoshijima, K., Jurynec, M. J., & Grunwald, D. J. (2016). Precise editing of the Zebrafish genome made simple and efficient. Developmental Cell, 36(6), 654-667. http://doi.org/10.1016/j.devcel.2016.02.015
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., & Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development (Cambridge, England), 140(24), 4982-4987. http://doi.org/10.1242/dev.099085
Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., … Yeh, J. R. J. (2013). Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One, 8(7), e68708. http://doi.org/10.1371/journal.pone.0068708
Inohaya, K., Yasumasu, S., Araki, K., Naruse, K., Yamazaki, K., Yasumasu, I., … Yamagami, K. (1997). Species-dependent migration of fish hatching gland cells that express astacin-like proteases in common [corrected]. Development, Growth & Differentiation, 39(2), 191-197.
Irion, U., Krauss, J., & Nüsslein-Volhard, C. (2014). Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development (Cambridge, England), 141(24), 4827-4830. http://doi.org/10.1242/dev.115584
Jao, L.-E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13904-13909. http://doi.org/10.1073/pnas.1308335110
Jasin, M., & Haber, J. E. (2016). The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair, 44, 6-16. http://doi.org/10.1016/j.dnarep.2016.05.001
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253-310. http://doi.org/10.1002/aja.1002030302
Kimura, Y., Hisano, Y., Kawahara, A., & Higashijima, S.-I. (2014). Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Scientific Reports, 4, 6545. http://doi.org/10.1038/srep06545
Li, J., Zhang, B.-B., Ren, Y.-G., Gu, S.-Y., Xiang, Y.-H., & Du, J.-L. (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Research, 25(5), 634-637. http://doi.org/10.1038/cr.2015.43
Mashal, R. D., Koontz, J., & Sklar, J. (1995). Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nature Genetics, 9(2), 177-183. http://doi.org/10.1038/ng0295-177
Scott, E. K., & Baier, H. (2009). The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Frontiers in Neural Circuits, 3, 13. http://doi.org/10.3389/neuro.04.013.2009
Shin, J., Chen, J., & Solnica-Krezel, L. (2014). Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development (Cambridge, England), 141(19), 3807-3818. http://doi.org/10.1242/dev.108019
Tabor, K. M., Bergeron, S. A., Horstick, E. J., Jordan, D. C., Aho, V., Porkka-Heiskanen, T., … Burgess, H. A. (2014). Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. Journal of Neurophysiology, 112(4), 834-844. http://doi.org/10.1152/jn.00228.2014
Won, M., & Dawid, I. B. (2017). PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS One, 12(3), e0172802. http://doi.org/10.1371/journal.pone.0172802
Zhang, Y., Huang, H., Zhang, B., & Lin, S. (2016). TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish. Methods in Cell Biology, 135, 107-120. http://doi.org/10.1016/bs.mcb.2016.03.005
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., … Lin, S. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nature Methods, 10(4), 329-331. http://doi.org/10.1038/nmeth.2374