Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
10 2019
10 2019
Historique:
received:
08
04
2019
accepted:
15
08
2019
entrez:
8
10
2019
pubmed:
8
10
2019
medline:
15
2
2020
Statut:
epublish
Résumé
The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen.
Identifiants
pubmed: 31589660
doi: 10.1371/journal.ppat.1008032
pii: PPATHOGENS-D-19-00657
pmc: PMC6779246
doi:
Substances chimiques
Bacterial Proteins
0
Membrane Proteins
0
Teichoic Acids
0
inlB protein, Listeria monocytogenes
0
Galactose
X2RN3Q8DNE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1008032Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P011071/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P028225/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 100289
Pays : United Kingdom
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Appl Environ Microbiol. 1990 Jun;56(6):1912-8
pubmed: 2116763
Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13832-7
pubmed: 15365184
Genome Announc. 2014 May 01;2(2):null
pubmed: 24786957
J Mol Biol. 2007 Feb 23;366(3):830-41
pubmed: 17178129
Cell Microbiol. 2006 Mar;8(3):457-70
pubmed: 16469057
Appl Environ Microbiol. 1992 Jan;58(1):296-302
pubmed: 1539980
J Biochem. 1982 Jul;92(1):23-33
pubmed: 6811573
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8478-83
pubmed: 17483484
Curr Genet. 2016 Nov;62(4):753-757
pubmed: 27113766
Foodborne Pathog Dis. 2009 Jan-Feb;6(1):39-48
pubmed: 18991548
Appl Environ Microbiol. 2010 Sep;76(17):5745-56
pubmed: 20622130
Clin Microbiol Rev. 2001 Jul;14(3):584-640
pubmed: 11432815
Nat Microbiol. 2016 Oct 10;2:16185
pubmed: 27723724
J Med Microbiol. 2006 Jun;55(Pt 6):645-59
pubmed: 16687581
Nat Biotechnol. 2012 Oct;30(10):997-1001
pubmed: 22983091
Mol Microbiol. 1999 Dec;34(5):902-14
pubmed: 10594817
Environ Microbiol. 2018 Nov;20(11):3941-3951
pubmed: 29984543
J Bacteriol. 2016 Jul 13;198(15):2029-42
pubmed: 27185829
J Bacteriol. 2009 Dec;191(23):7206-15
pubmed: 19783628
Mol Microbiol. 2015 Jul;97(1):33-46
pubmed: 25825127
Cold Spring Harb Perspect Med. 2012 Nov 01;2(11):null
pubmed: 23125201
Mol Microbiol. 1995 Apr;16(2):251-61
pubmed: 7565087
Mol Microbiol. 2016 Sep;101(5):714-30
pubmed: 26871418
Mol Microbiol. 2001 Nov;42(4):955-65
pubmed: 11737639
J Bacteriol. 1999 Jan;181(2):418-25
pubmed: 9882654
Microbiol Mol Biol Rev. 2003 Dec;67(4):686-723
pubmed: 14665680
J Bacteriol. 2008 Sep;190(17):5753-65
pubmed: 18567664
Lancet Infect Dis. 2014 Nov;14(11):1073-1082
pubmed: 25241232
J Bacteriol. 1983 Nov;156(2):809-17
pubmed: 6415040
Mol Microbiol. 1998 Mar;27(5):1077-87
pubmed: 9535096
Nat Chem Biol. 2007 Sep;3(9):541-8
pubmed: 17710100
J Exp Med. 2001 Feb 5;193(3):393-7
pubmed: 11157059
Mol Microbiol. 1997 Jul;25(2):285-94
pubmed: 9282740
Infect Immun. 2002 Feb;70(2):938-44
pubmed: 11796629
Mol Microbiol. 2014 Apr;92(1):84-99
pubmed: 24673724
Annu Rev Microbiol. 2013;67:313-36
pubmed: 24024634
J Biol Chem. 2018 Mar 2;293(9):3293-3306
pubmed: 29343515
J Biol Chem. 2017 Oct 27;292(43):17832-17844
pubmed: 28912268
EMBO J. 1999 Jul 15;18(14):3956-63
pubmed: 10406800
J Bacteriol. 2001 Feb;183(4):1133-9
pubmed: 11157924
Nat Genet. 2016 Mar;48(3):308-313
pubmed: 26829754
Cell. 2000 Oct 27;103(3):501-10
pubmed: 11081636
J Biol Chem. 2014 Oct 10;289(41):28054-69
pubmed: 25128528
J Pathol. 1995 Jun;176(2):151-9
pubmed: 7636625
Mol Microbiol. 2009 Oct;74(2):299-314
pubmed: 19682249
Infect Immun. 2001 Apr;69(4):2054-65
pubmed: 11254558
FEMS Microbiol Lett. 2007 Oct;275(1):31-7
pubmed: 17666069
J Exp Med. 2002 Jun 17;195(12):1635-40
pubmed: 12070290
Lancet Infect Dis. 2017 May;17(5):510-519
pubmed: 28139432
Virology. 2015 Mar;477:110-118
pubmed: 25708539
J Med Microbiol. 2015 Aug;64(8):818-27
pubmed: 26055558
BMC Genomics. 2013 Jan 22;14:47
pubmed: 23339658
J Infect Dis. 2005 May 15;191(10):1771-7
pubmed: 15838806
Cell. 1992 Feb 7;68(3):521-31
pubmed: 1739966
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12318-23
pubmed: 15302931
Microbiology. 1996 Apr;142 ( Pt 4):985-92
pubmed: 8936325
Infect Immun. 2008 Sep;76(9):4046-54
pubmed: 18559424
Genome Announc. 2016 Mar 31;4(2):null
pubmed: 27034489
Appl Environ Microbiol. 2008 Mar;74(5):1653-5
pubmed: 18192405
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):567-572
pubmed: 29298913
Nat Med. 2004 Mar;10(3):243-5
pubmed: 14758355
J Biochem. 1986 Feb;99(2):315-27
pubmed: 3084460
Front Microbiol. 2018 Jul 02;9:1352
pubmed: 30034372
Nat Rev Microbiol. 2010 May;8(5):317-27
pubmed: 20348932
J Bacteriol. 2002 Aug;184(15):4177-86
pubmed: 12107135
PLoS Pathog. 2015 May 22;11(5):e1004919
pubmed: 26001194
Int J Med Microbiol. 2011 Feb;301(2):79-96
pubmed: 20708964
Mol Microbiol. 2000 Jan;35(2):324-40
pubmed: 10652093
Nucleic Acids Res. 2018 Jul 27;46(13):6920-6933
pubmed: 30053228
J Antibiot (Tokyo). 2014 Jan;67(1):43-51
pubmed: 24169797
J Exp Med. 2015 Feb 9;212(2):165-83
pubmed: 25624443