Hippocampal GABA levels correlate with retrieval performance in an associative learning paradigm.
Adult
Association Learning
/ physiology
Cerebral Cortex
/ diagnostic imaging
Facial Recognition
/ physiology
Female
Glutamic Acid
/ metabolism
Hippocampus
/ diagnostic imaging
Humans
Magnetic Resonance Spectroscopy
Male
Mental Recall
/ physiology
Thalamus
/ diagnostic imaging
Young Adult
gamma-Aminobutyric Acid
/ metabolism
GABA
Glutamate
Hippocampus
Learning
MRSI
Plasticity
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
01 01 2020
01 01 2020
Historique:
received:
03
07
2019
revised:
29
08
2019
accepted:
03
10
2019
pubmed:
14
10
2019
medline:
28
11
2020
entrez:
14
10
2019
Statut:
ppublish
Résumé
Neural plasticity is a complex process dependent on neurochemical underpinnings. Next to the glutamatergic system which contributes to memory formation via long-term potentiation (LTP) and long-term depression (LTD), the main inhibitory neurotransmitter, GABA is crucially involved in neuroplastic processes. Hence, we investigated changes in glutamate and GABA levels in the brain in healthy participants performing an associative learning paradigm. Twenty healthy participants (10 female, 25 ± 5 years) underwent paired multi-voxel magnetic resonance spectroscopy imaging before and after completing 21 days of a facial associative learning paradigm in a longitudinal study design. Changes of GABA and glutamate were compared to retrieval success in the hippocampus, insula and thalamus. No changes in GABA and glutamate concentration were found after 21 days of associative learning. However, baseline hippocampal GABA levels were significantly correlated with initial retrieval success (p
Identifiants
pubmed: 31606475
pii: S1053-8119(19)30835-3
doi: 10.1016/j.neuroimage.2019.116244
pmc: PMC7610791
mid: EMS123950
pii:
doi:
Substances chimiques
Glutamic Acid
3KX376GY7L
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
116244Informations de copyright
Copyright © 2019 Elsevier Inc. All rights reserved.
Références
Neuroscience. 2010 Dec 1;171(2):496-505
pubmed: 20850507
Annu Rev Neurosci. 1996;19:437-62
pubmed: 8833450
Nature. 1993 Jan 7;361(6407):31-9
pubmed: 8421494
J Neurosci. 2011 Nov 16;31(46):16556-60
pubmed: 22090482
Br J Pharmacol. 2006 Nov;149(5):581-90
pubmed: 16921399
Neuroimage. 2017 Jun;153:189-197
pubmed: 28363835
J Magn Reson Imaging. 2015 May;41(5):1326-31
pubmed: 24863149
Eur Radiol. 2017 Jul;27(7):2698-2705
pubmed: 27966041
Curr Top Med Chem. 2002 Aug;2(8):841-51
pubmed: 12171575
Psychopharmacology (Berl). 1993;111(4):391-401
pubmed: 7870979
J Neurosci. 1999 Jun 1;19(11):4609-15
pubmed: 10341258
Invest Radiol. 2017 Oct;52(10):631-639
pubmed: 28459799
Aging (Albany NY). 2018 Dec 5;10(12):3645-3646
pubmed: 30521483
Behav Brain Res. 2003 Mar 18;140(1-2):1-47
pubmed: 12644276
NMR Biomed. 2016 Nov;29(11):1656-1665
pubmed: 27717093
J Neurosci. 2007 Apr 4;27(14):3845-54
pubmed: 17409249
J Physiol. 2019 Jan;597(1):271-282
pubmed: 30300446
Prog Neurobiol. 2016 Mar-May;138-140:1-18
pubmed: 26855369
Trends Cogn Sci. 2011 Jan;15(1):20-7
pubmed: 20951630
Brain Res Bull. 2006 Jun 15;70(1):8-14
pubmed: 16750477
Neuropharmacology. 2013 Nov;74:32-40
pubmed: 23628345
J Neurosci. 2009 Dec 16;29(50):15721-6
pubmed: 20016087
Behav Brain Res. 2015 Sep 1;290:152-60
pubmed: 25960314
J Neurosci. 1992 Jan;12(1):21-34
pubmed: 1345945
Elife. 2017 Jan 05;6:
pubmed: 28055824
Neuroimage. 2014 Dec;103:290-302
pubmed: 25255945
Neurobiol Aging. 2019 Jan;73:211-218
pubmed: 30390554
J Theor Biol. 1977 Mar 7;65(1):141-69
pubmed: 191700
PLoS One. 2016 Feb 09;11(2):e0148621
pubmed: 26859495
Neuroimage. 2017 Oct 1;159:32-45
pubmed: 28716717
Trends Neurosci. 1998 Jul;21(7):273-8
pubmed: 9683315
J Neurosci. 2018 Sep 5;38(36):7844-7851
pubmed: 30064995
Mult Scler. 2019 Apr;25(4):574-584
pubmed: 29512427
Brain Res. 2016 Aug 1;1644:127-40
pubmed: 27174001
PLoS One. 2014 Nov 24;9(11):e113845
pubmed: 25419976
Science. 2008 Feb 15;319(5865):966-8
pubmed: 18276894
Neuroimage. 2014 Mar;88:22-31
pubmed: 24201013
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
Neurology. 2007 Sep 18;69(12):1213-23
pubmed: 17875909
Curr Opin Neurobiol. 2019 Feb;54:20-27
pubmed: 30195105
Clin Geriatr Med. 2013 Nov;29(4):737-52
pubmed: 24094294
Synapse. 2000 Feb;35(2):120-8
pubmed: 10611637
Nat Rev Neurosci. 2007 Sep;8(9):687-99
pubmed: 17704811
Hippocampus. 2005;15(8):997-1005
pubmed: 16281291
Curr Opin Neurobiol. 2019 Feb;54:98-103
pubmed: 30321867
Neuroreport. 2015 Jul 8;26(10):567-71
pubmed: 26053697
Hippocampus. 2018 Sep;28(9):659-671
pubmed: 28921762
Front Mol Neurosci. 2019 Feb 14;12:28
pubmed: 30837839
Neuron. 2002 Jan 31;33(3):341-55
pubmed: 11832223
Eur J Neurosci. 2011 Aug;34(3):362-73
pubmed: 21722213
Neurorehabil Neural Repair. 2015 Mar-Apr;29(3):278-86
pubmed: 25055837
Cortex. 2003 Sep-Dec;39(4-5):1047-62
pubmed: 14584566
Nat Rev Neurosci. 2015 Dec;16(12):719-32
pubmed: 26530468
Mol Neurobiol. 2017 Sep;54(7):5497-5510
pubmed: 27599499
J Exp Psychol Gen. 2013 Nov;142(4):1323-34
pubmed: 24246059