Machine learning of human plasma lipidomes for obesity estimation in a large population cohort.
Adipose Tissue
/ metabolism
Biomarkers
/ blood
Body Fat Distribution
/ statistics & numerical data
Body Mass Index
Cohort Studies
Female
Finland
Humans
Lipid Metabolism
Lipidomics
Machine Learning
Male
Models, Statistical
Obesity
/ blood
Sex Factors
Sphingomyelins
/ blood
Waist Circumference
Waist-Hip Ratio
Journal
PLoS biology
ISSN: 1545-7885
Titre abrégé: PLoS Biol
Pays: United States
ID NLM: 101183755
Informations de publication
Date de publication:
10 2019
10 2019
Historique:
received:
31
05
2019
accepted:
04
09
2019
entrez:
19
10
2019
pubmed:
19
10
2019
medline:
26
2
2020
Statut:
epublish
Résumé
Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.
Identifiants
pubmed: 31626640
doi: 10.1371/journal.pbio.3000443
pii: PBIOLOGY-D-19-01560
pmc: PMC6799887
doi:
Substances chimiques
Biomarkers
0
Sphingomyelins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3000443Déclaration de conflit d'intérêts
I have read the journal's policy and the authors of this manuscript have the following competing interests: KS is CEO of Lipotype GmbH. KS, CK and MS are shareholders of Lipotype GmbH. MJG is employee of Lipotype GmbH. VS has participated in a conference trip sponsored by Novo Nordisk and received an honorarium from the same source for participating in an advisory board meeting. He also has ongoing research collaboration with Bayer Ltd.
Références
Adv Nutr. 2016 Jul 15;7(4):730-4
pubmed: 27422507
J Lipid Res. 2008 May;49(5):1137-46
pubmed: 18281723
Chem Phys Lipids. 2018 Dec;217:29-34
pubmed: 30359584
Eur J Lipid Sci Technol. 2015 Oct;117(10):1540-1549
pubmed: 26494980
Nat Rev Endocrinol. 2017 Feb;13(2):79-91
pubmed: 27767036
Lipids. 1970 Nov;5(11):878-91
pubmed: 4921900
Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1411-6
pubmed: 17431184
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1420-4
pubmed: 18230739
Cell Chem Biol. 2019 Jan 17;26(1):71-84.e4
pubmed: 30415965
J Lipid Res. 2016 Jul;57(7):1194-203
pubmed: 27165858
Nat Commun. 2016 Feb 01;7:10495
pubmed: 26833246
Cell Metab. 2012 May 2;15(5):606-14
pubmed: 22560213
J Lipid Res. 2014 Dec;55(12):2597-605
pubmed: 25281760
Cell Metab. 2018 Feb 6;27(2):276-280
pubmed: 29307517
J Lipid Res. 2017 Dec;58(12):2275-2288
pubmed: 28986437
PLoS Med. 2018 Oct 10;15(10):e1002670
pubmed: 30303968
JAMA. 2005 Apr 20;293(15):1861-7
pubmed: 15840860
Circulation. 2018 Mar 27;137(13):1391-1406
pubmed: 29581366
J Am Coll Nutr. 2018 Jan;37(1):44-50
pubmed: 29043930
Nutr Metab Cardiovasc Dis. 2006 Mar;16(2):128-36
pubmed: 16487913
Arterioscler Thromb Vasc Biol. 2016 Dec;36(12):2424-2430
pubmed: 27765765
J Lipid Res. 2002 Nov;43(11):1899-907
pubmed: 12401889
Sci Rep. 2017 Mar 13;7:43946
pubmed: 28287094
Nat Rev Mol Cell Biol. 2010 Aug;11(8):593-8
pubmed: 20606693
Mayo Clin Proc. 2011 Jun;86(6):584; author reply 584-5
pubmed: 21628621
J Lipid Res. 2005 May;46(5):839-61
pubmed: 15722563
Cell. 2010 Dec 10;143(6):888-95
pubmed: 21145456
Nat Rev Mol Cell Biol. 2018 May;19(5):281-296
pubmed: 29410529
J Chronic Dis. 1972 Jul 1;25(6):329-43
pubmed: 4650929
Scand J Public Health. 2006;34(6):568-75
pubmed: 17132589
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Am J Public Health. 2014 Mar;104(3):512-9
pubmed: 24432921
N Engl J Med. 2008 Nov 13;359(20):2105-20
pubmed: 19005195
Sci Rep. 2017 Jun 16;7(1):3750
pubmed: 28623287
PLoS Genet. 2008 Nov;4(11):e1000282
pubmed: 19043545
Am J Clin Nutr. 2017 Jun;105(6):1544-1551
pubmed: 28424190
JCI Insight. 2019 Jun 4;5:
pubmed: 31162145
Sci Rep. 2016 Jan 08;6:19139
pubmed: 26743939
Sci Rep. 2016 Jun 14;6:27710
pubmed: 27295977
PLoS One. 2012;7(1):e29851
pubmed: 22272252
Cell Metab. 2019 Feb 5;29(2):488-500.e2
pubmed: 30318341
PLoS One. 2015 Apr 02;10(3):e0121945
pubmed: 25835001
Aging Clin Exp Res. 2017 Aug;29(4):591-597
pubmed: 27568020
Int J Obes Relat Metab Disord. 2001 Nov;25(11):1730-5
pubmed: 11753597
Genome Biol. 2011;12(1):R8
pubmed: 21247462
J Proteome Res. 2017 Aug 4;16(8):2947-2953
pubmed: 28650171
J Am Heart Assoc. 2016 Nov 29;5(12):
pubmed: 27899364
Ann Intern Med. 2016 Apr 19;164(8):532-41
pubmed: 26954388
J Lipid Res. 1969 Nov;10(6):687-93
pubmed: 5356753
Trends Endocrinol Metab. 2019 May;30(5):283-285
pubmed: 30926249
JAMA. 2018 Jan 16;319(3):223-224
pubmed: 29340687
Am J Clin Nutr. 2008 Apr;87(4):817-23
pubmed: 18400702
J Lipid Res. 2010 Nov;51(11):3299-305
pubmed: 20671299
Nature. 2015 Feb 12;518(7538):197-206
pubmed: 25673413
Bioinformatics. 2015 Sep 1;31(17):2860-6
pubmed: 25943471
Proteomics. 2018 Mar;18(5-6):e1800039
pubmed: 29417741
J Intern Med. 2005 May;257(5):430-7
pubmed: 15836659
Psychol Methods. 2007 Dec;12(4):399-413
pubmed: 18179351
Ann N Y Acad Sci. 2002 Jun;967:183-95
pubmed: 12079847