Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity.
Cornelia de Lange
MRXS33 intellectual disability syndrome
TAF1
exome sequencing
transcriptomopathy
Journal
Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429
Informations de publication
Date de publication:
23 Oct 2019
23 Oct 2019
Historique:
entrez:
25
10
2019
pubmed:
28
10
2019
medline:
28
10
2019
Statut:
aheadofprint
Résumé
We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.
Identifiants
pubmed: 31646703
doi: 10.1002/humu.23936
pmc: PMC7187541
mid: NIHMS1577639
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NHGRI NIH HHS
ID : U54 HG006542
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006542
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105078
Pays : United States
Organisme : NHGRI NIH HHS
ID : K08 HG008986
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG008680
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NLM NIH HHS
ID : R01 LM012895
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
This article is protected by copyright. All rights reserved.
Références
Eur J Hum Genet. 2006 Oct;14(10):1090-6
pubmed: 16773126
Am J Hum Genet. 2017 Sep 7;101(3):466-477
pubmed: 28886345
N Engl J Med. 2017 Jan 5;376(1):21-31
pubmed: 27959697
Am J Hum Genet. 2017 Feb 2;100(2):267-280
pubmed: 28132688
Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10347-52
pubmed: 12928496
Cerebellum. 2007;6(4):300-7
pubmed: 17853080
Cell. 2007 Oct 5;131(1):58-69
pubmed: 17884155
Am J Hum Genet. 1992 Dec;51(6):1229-39
pubmed: 1281384
Nat Rev Genet. 2018 Oct;19(10):649-666
pubmed: 29995837
Cell Res. 2014 Dec;24(12):1433-44
pubmed: 25412659
CNS Neurosci Ther. 2018 Dec;24(12):1196-1206
pubmed: 29667327
Sci Rep. 2018 Mar 15;8(1):4630
pubmed: 29545534
Science. 2000 May 26;288(5470):1422-5
pubmed: 10827952
Eur J Hum Genet. 2015 Oct;23(10):1334-40
pubmed: 25604858
Nat Genet. 2017 Apr;49(4):504-510
pubmed: 28191890
Am J Med Genet A. 2017 Oct;173(10):2680-2689
pubmed: 28815871
Genet Med. 2018 Dec;20(12):1528-1537
pubmed: 29790871
Hum Mol Genet. 2018 Jun 15;27(12):2171-2186
pubmed: 29648665
Nat Genet. 2014 Sep;46(9):944-50
pubmed: 25086666
Mol Cell. 2017 Oct 5;68(1):118-129.e5
pubmed: 28918900
Cell. 2018 Feb 22;172(5):897-909.e21
pubmed: 29474918
Pediatr Neurol. 2013 Dec;49(6):411-416.e1
pubmed: 24084144
PLoS Genet. 2014 Oct 30;10(10):e1004772
pubmed: 25356899
Nat Commun. 2018 Apr 24;9(1):1612
pubmed: 29691392
Am J Hum Genet. 2007 Mar;80(3):393-406
pubmed: 17273961
Mol Psychiatry. 2016 Jan;21(1):133-48
pubmed: 25644381
J Med Genet. 2015 Apr;52(4):282-8
pubmed: 25587064
Neuroscience. 2005;133(4):863-72
pubmed: 15916858
Curr Opin Genet Dev. 2011 Apr;21(2):219-24
pubmed: 21420851
Neurobiol Dis. 2019 Dec;132:104539
pubmed: 31344492
Bioinformatics. 2011 Jun 15;27(12):1711-2
pubmed: 21505037
PLoS One. 2015 Feb 13;10(2):e0116454
pubmed: 25679214
Congenit Anom (Kyoto). 2020 Jan;60(1):40-41
pubmed: 30805980
Genet Med. 2016 Jul;18(7):696-704
pubmed: 26633542
Nature. 2016 Aug 17;536(7616):285-91
pubmed: 27535533
Nat Rev Genet. 2018 May;19(5):253-268
pubmed: 29398702
Sci Rep. 2019 Jul 24;9(1):10730
pubmed: 31341187
Nature. 2017 Feb 23;542(7642):433-438
pubmed: 28135719
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Nucleic Acids Res. 2017 Jan 4;45(D1):D865-D876
pubmed: 27899602
Proteins. 2002 May 15;47(3):393-402
pubmed: 11948792
FEBS Lett. 2012 Aug 14;586(17):2692-704
pubmed: 22710155
Hum Mol Genet. 2014 Dec 20;23(25):6878-93
pubmed: 25104854
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894
pubmed: 30371827
Am J Hum Genet. 2015 Dec 3;97(6):922-32
pubmed: 26637982
Ann Neurol. 2019 Jun;85(6):812-822
pubmed: 30973967
Int J Neurosci. 2011;121 Suppl 1:12-7
pubmed: 21034368
Structure. 2015 Oct 6;23(10):1801-1814
pubmed: 26365797
Nat Genet. 2014 Mar;46(3):310-5
pubmed: 24487276
Clin Genet. 2019 Jan;95(1):151-159
pubmed: 30315573
Mov Disord. 2002 Nov;17(6):1271-7
pubmed: 12465067
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E11020-E11028
pubmed: 29229810
Hum Mutat. 2016 Mar;37(3):235-41
pubmed: 26555599
Int J Neurosci. 2011;121 Suppl 1:3-11
pubmed: 21047175
J Clin Invest. 2015 Feb;125(2):636-51
pubmed: 25574841
Nature. 2011 Sep 21;478(7367):57-63
pubmed: 21937992
Cell. 2012 Mar 30;149(1):214-31
pubmed: 22464331
Am J Med Genet A. 2017 Nov;173(11):3003-3012
pubmed: 28944577
Hum Genet. 2017 Jul;136(7):821-834
pubmed: 28393272
Hum Genet. 2014 Jan;133(1):1-9
pubmed: 24077912