Between an ocean and a high place: coastal drainage isolation generates endemic cryptic species in the Cape kurper Sandelia capensis (Anabantiformes: Anabantidae), Cape Region, South Africa.
Sandelia
coastal rivers
cryptic species
endemism
freshwater phylogeography
palaeorivers
Journal
Journal of fish biology
ISSN: 1095-8649
Titre abrégé: J Fish Biol
Pays: England
ID NLM: 0214055
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
12
12
2018
accepted:
23
10
2019
pubmed:
28
10
2019
medline:
26
6
2020
entrez:
25
10
2019
Statut:
ppublish
Résumé
This study investigated the range-wide phylogenetics and biogeography of the Cape kurper Sandelia capensis, a primary freshwater fish endemic to and widespread within the Cape Floristic Region (CFR) of South Africa. Maximum likelihood, Bayesian phylogenetic and haplotype network analyses, based on two mitochondrial and two nuclear genes, revealed the existence of three reciprocally monophyletic, deeply divergent and allopatric clades that probably represent cryptic species. The West Coast Clade is largely confined to the Langvlei, Verlorenvlei, Berg and Diep Rivers, the Klein River Clade is endemic to the Klein River and the South Coast Clade is found everywhere else in the range of S. capensis sensu lato. It was hypothesised that divergences within S. capensis sensu lato probably occurred because of isolation of coastal drainages by persistent drainage divides or vicariance of current tributaries by the drowning of their confluences by high sea levels. The current distribution of lineages could be due to historical range expansion and gene flow via river capture or some other mode of transdivide dispersal or dispersal during periods of low sea level via palaeoriver confluences of currently isolated coastal rivers. Comparison of BEAST2 estimated divergence times with the timing of climatic, geological and geomorphological events supported long-term coastal drainage isolation, punctuated by rare transdivide dispersal events and limited palaeoriver dispersal, as the best explanation of current phylogeographic and divergence patterns in S. capensis. Hydrological barriers that block upstream passage in palaeotributaries could hypothetically explain why S. capensis failed to disperse through certain palaeoriver confluences. There were several sites where biogeographic patterns have likely been confounded by human translocation of S. capensis. Alien fish predators and water extraction may threaten the three cryptic species more severely than previously realised, due to their smaller population sizes and inhabitation of only a portion of the range previously ascribed to S. capensis sensu lato. The preponderance of cryptic diversity and endemism in the CFR suggests that additional undescribed cryptic species of obligate freshwater fishes may be found in short coastal river systems around the world, especially in regions with a history of geological stability and a narrow continental shelf.
Substances chimiques
DNA, Mitochondrial
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1087-1099Subventions
Organisme : Oregon State University (US)
Organisme : South African Institute for Aquatic Biodiversity
Informations de copyright
© 2019 The Fisheries Society of the British Isles.
Références
Apte, S., Smith, P. J., & Wallis, G. P. (2007). Mitochondrial phylogeography of New Zealand freshwater crayfishes, Paranephrops spp. Molecular Ecology, 16, 1897-1908.
Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148-155.
Barnard, K. H. (1943). Revision of the indigenous freshwater fishes of the S. W. Cape region. Annals of the South African Museum, 36(part 2), 101-262.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537.
Cambray, J. A. (2002). Conservation needs of Sandelia bainsii, an endangered African anabantid. In I. G. C. M. J. Collares-Pereira & M. M. Coelho (Eds.), Conservation of freshwater fishes: Options for the future (pp. 90-97). Oxford: Blackwell Science.
Cassens, I., Mardulyn, P., & Milinkovitch, M. C. (2005). Evaluating intraspecific "network" construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach? Systematic Biology, 54, 363-372.
Chakona, A., & Swartz, E. R. (2012). Contrasting habitat associations of imperilled endemic stream fishes from a global biodiversity hot spot. BMC Ecology, 12, 1-12.
Chakona, A., & Swartz, E. R. (2013). A new redfin species, Pseudobarbus skeltoni (Cyprinidae, Teleostei), from the Cape Floristic Region, South Africa. Zootaxa, 3686, 565-577.
Chakona, A., Swartz, E. R., & Gouws, G. (2013a). Evolutionary drivers of diversification and distribution of a southern temperate stream fish assemblage: testing the role of historical isolation and spatial range expansion. PLoS One, 8, 1-13.
Chakona, A., Swartz, E. R., Gouws, G., & Bloomer, P. (2013b). A freshwater fish defies ancient mountain ranges and drainage divides: Extrinsic and intrinsic influences on the evolutionary history of a recently identified galaxiid. Journal of Biogeography, 40, 1399-1412.
Chakona, G., Swartz, E. R., & Chakona, A. (2015). Historical abiotic events or human-aided dispersal: inferring the evolutionary history of a newly discovered galaxiid fish. Ecology and Evolution, 5, 1369-1380.
Chow, S. (1998). Universal PCR primer for Calmodulin gene intron in fish. Fisheries Science, 64, 999-1000.
Chow, S., & Hazama, K. (1998). Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology, 7, 1255-1256.
Conrad, C. P. (2013). The solid Earth's influence on sea level. Geological Society of America Bulletin, 125, 1027-1052.
Cowling, R. M., Proches, S., & Partridge, T. C. (2009). Explaining the uniqueness of the Cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification. Molecular Phylogenetics and Evolution, 51, 64-74.
Cuvier, G. (1829). Le Règne Animal, distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée (2nd ed.). Paris: Chez Déterville.
Darwall, W. R. T., Smith, K. G., Tweddle, D., & Skelton, P. (2009). The Status and Distribution of Freshwater Biodiversity in Southern Africa. Gland, Switzerland and Grahamstown, South Africa: IUCN and south African Institute for Aquatic Biodiversity (SAIAB).
de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879-886.
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.
Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S. & et al. (2013) Geneious.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Ellender, B. R., Wasserman, R. J., Chakona, A., Skelton, P. H., & Weyl, O. L. F. (2017). A review of the biology and status of Cape Fold ecoregion freshwater fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 867-879.
Ellender, B. R., & Weyl, O. L. F. (2014). A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions, 9, 117-132.
Fišer, C., Robinson, C. T., & Malard, F. (2018). Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27, 613-635.
Goldblatt, P., & Manning, J. (2002). Plant diversity of the Cape Region of South Africa. Annals of the Missouri Botanical Garden, 89, 281-302.
Gouws, G., Stewart, B. A., & Daniels, S. R. (2004). Cryptic species within the freshwater isopod Mesamphisopus capensis (Phreatoicidea: Amphisopodidae) in the Western Cape, South Africa: allozyme and 12S rRNA sequence data and morphometric evidence. Biological Journal of the Linnean Society, 81, 235-253.
Hamman, K. C. D., Thorne, S. C., & Skelton, P. H. (1984). The discovery of the Cape Kurper, Sandelia capensis (Cuvier in C. & V., 1831) in the Olifants River system (Western Cape Province). The Naturalist, 28, 24-26.
Hanke, M., & Wink, M. (1994). Direct DNA sequencing of PCR-amplified vector inserts following enzymatic degradation of primer and dNTPs. BioTechniques, 17, 858.
Harrison, A. C. (1952). The Cape kurper (with notes on the rockey of the eastern province). Piscator, 23, 82-91.
Hendey, Q. B. (1983). Cenozoic geology and palaeogeography of the fynbos region. In H. J. Deacon, Q. B. Hendey, & J. J. N. Lambrechts (Eds.), Fynbos palaeoecology: A preliminary synthesis (pp. 35-60). Pretoria, South Africa: CSIR.
Hughes, L. C., Ortí, G., Huang, Y., Sun, Y., Baldwin, C. C., Thompson, A. W., … Shi, Q. (2018). Comprehensive phylogeny of ray-finned fishes (Actinopterygii) base on transcriptomic and genomic data. Proceedings of the Academy of Natural Sciences U S A, 115, 6249-6254.
Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695-1701.
Lopera-Barrero, M., Povh, J. A., Ribeiro, R. P., Gomes, P. C., Jacometo, C. B., & da Silva Lopes, T. (2008). Comparison of DNA extraction protocols of fish fin and larvae samples: Modified salt (NaCl) extraction. Ciencia e Investigacion Agraria, 35, 65-74.
McCarthy, T., & Rubidge, B. (2005). The story of earth and life: A southern African perspective on a 4.6-billion-year journey. Cape Town, South Africa: Struik Publishers.
Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24, 40-53.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293-1298.
Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. New Orleans, LA.
Mittermeier, R. A., Myers, N., Thorsen, J. B., da Fonseca, G. A. B., & Olivieri, S. (1998). Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conservation Biology, 12, 516-520.
Moritz, C. (1994). Defining 'evolutionary significant units' for conservation. Trends in Ecology and Evolution, 9, 373-375.
Murray, A. M., & Thewissen, J. G. M. (2008). Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). Journal of Vertebrate Paleontology, 28, 41-52.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
Nel, J. L., Roux, D. J., Maree, G., Kleynhans, C. J., Moolman, J., Reyers, B., … Cowling, R. M. (2007). Rivers in peril inside and outside protected areas: A systematic approach to conservation assessment of river ecosystems. Diversity and Distributions, 13, 341-352.
Olson, D. M., & Dinerstein, E. (2002). The global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199-224.
Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A., … Benton, M. J. (2012). Best practices for justifying fossil calibrations. Systematic Biology, 61, 346-359.
Partridge, T. C., & Maud, R. R. (1987). Geomorphic evolution of southern Africa since the Mesozoic. South African Journal of Geology, 90, 179-208.
Partridge, T. C., & Maud, R. R. (2000). Macro-scale geomorphic evolution of southern Africa. In T. C. Partridge & R. R. Maud (Eds.), The Cenozoic of Southern Africa (pp. 3-18). New York, NY: Oxford University Press.
Phiri, E. E., & Daniels, S. R. (2014). Disentangling the divergence and cladogenesis in the freshwater crab species (Potamonautidae: Potamonautes perlatus sensu lato) in the cape Fold Mountains, South Africa, with the description of two novel cryptic lineages. Zoological Journal of the Linnean Society, 170, 310-332.
Raadik, T. A. (2014). Fifteen from one: a revision of the Galaxias olidus Günther, 1866 complex (Teleostei, Galaxiidae) in South-Eastern Australia recognises three previously described taxa and describes 12 new species. Zootaxa, 3898, 1-198.
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology,
Ramsay, P. J., & Cooper, J. A. G. (2002). Late Quaternary Sea-level change in South Africa. Quaternary Research, 57, 82-90.
Rogers, J. (1985). Geomorphology, offshore bathymetry and quaternary lithostratigraphy around the Bot River estuary. Transactions of the Royal Society of South Africa, 45, 211-227.
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Roos, H. (2004) Genetic diversity in the anabantids Sandelia capensis and S. bainsii: A phylogeographic and phylogenetic investigation. (Master's Thesis). University of Pretoria, Pretoria, South Africa.
Rüber, L., Britz, R., & Zardoya, R. (2006). Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Systematic Biology, 55, 374-397.
Siesser, W. G., & Dingle, R. V. (1981). Tertiary Sea-level movements around southern Africa. Journal of Geology, 89, 83-96.
Skelton, P. (2001). A complete guide to the freshwater fishes of Southern Africa. Cape Town, South Africa: Struik.
Spasojevic, S., & Gurnis, M. (2012). Sea level and vertical motion of continents from dynamic earth models since the late cretaceous. American Association of Petroleum Geologists Bulletin, 96, 2037-2064.
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.
Stattersfield, A. J., Crosby, M. J., Long, A. J., & Wedge, D. C. (1998). Endemic bird areas of the world. Cambridge: BirdLife International.
Swartz, E.R. & Impson, D. (2007) Sandelia capensis. The IUCN Red List of Threatened Species, www.iucnredlist.org.
Swartz, E. R., Skelton, P. H., & Bloomer, P. (2009). Phylogeny and biogeography of the genus Pseudobarbus (Cyprinidae): Shedding light on the drainage history of rivers associated with the Cape Floristic Region. Molecular Phylogenetics and Evolution, 51, 75-84.
Swartz, E. R., Chakona, A., Skelton, P. H., & Bloomer, P. (2014). The genetic legacy of lower sea levels: does the confluence of rivers during the last glacial maximum explain the contemporary distribution of a primary freshwater fish (Pseudobarbus burchelli, Cyprinidae) across isolated river systems? Hydrobiologia, 726, 109-121.
Thwaites, R. N., & Jacobs, E. O. (1989). The Cenozoic history of the coastal landscape of the southern Cape Province, South Africa: A review. Quaternary Science Reviews, 8, 283-293.
Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources, 9, 1077-1085.
Wishart, M., Hughes, J., Stewart, B., & Impson, D. (2006). Extreme levels of intra-specific divergence among Cape Peninsula populations of the Cape galaxias, Galaxias zebratus Castelnau 1861, reveals a possible species complex. African Journal of Aquatic Science, 31, 99-106.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms and aberrations in global climate 65 MBP to present. Science, 292, 686-693.