Convergent evolution in toothed whale cochleae.
Convergence
Echolocation
Ecomorphology
Inner ear
Odontoceti
Phylogenetic comparative methods
Journal
BMC evolutionary biology
ISSN: 1471-2148
Titre abrégé: BMC Evol Biol
Pays: England
ID NLM: 100966975
Informations de publication
Date de publication:
24 10 2019
24 10 2019
Historique:
received:
15
04
2019
accepted:
01
10
2019
entrez:
26
10
2019
pubmed:
28
10
2019
medline:
18
12
2019
Statut:
epublish
Résumé
Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. We identified three convergent regimes: (1) True's (Mesoplodon mirus) and Cuvier's (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall's porpoise (Phocoenoides dalli). Interestingly the 'river dolphins', a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.
Sections du résumé
BACKGROUND
Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance.
RESULTS
We identified three convergent regimes: (1) True's (Mesoplodon mirus) and Cuvier's (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall's porpoise (Phocoenoides dalli). Interestingly the 'river dolphins', a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime.
CONCLUSIONS
The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.
Identifiants
pubmed: 31651234
doi: 10.1186/s12862-019-1525-x
pii: 10.1186/s12862-019-1525-x
pmc: PMC6813997
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
195Références
PeerJ. 2017 Nov 21;5:e4090
pubmed: 29177120
Curr Biol. 2010 Jan 26;20(2):R53-4
pubmed: 20129036
J Morphol. 2016 Jan;277(1):34-64
pubmed: 26449979
Proc Biol Sci. 2017 Mar 15;284(1850):
pubmed: 28275142
Science. 2013 Jul 19;341(6143):292-5
pubmed: 23869019
J Morphol. 2017 Jun;278(6):801-809
pubmed: 28333389
Curr Biol. 2017 Jun 19;27(12):1776-1781.e9
pubmed: 28602653
Anat Rec (Hoboken). 2007 Jun;290(6):716-33
pubmed: 17516434
Evol Bioinform Online. 2015 Feb 12;11:11-4
pubmed: 25733793
Evolution. 2015 Aug;69(8):2140-53
pubmed: 26177938
J Morphol. 2012 Sep;273(9):1021-30
pubmed: 22806763
J Morphol. 1996 Jun;228(3):223-85
pubmed: 8622183
Hear Res. 2011 Mar;273(1-2):89-99
pubmed: 20630478
Syst Biol. 2009 Dec;58(6):573-85
pubmed: 20525610
Biol Lett. 2016 Apr;12(4):
pubmed: 27072406
J Anat. 2007 Jul;211(1):78-91
pubmed: 17555545
Proc Biol Sci. 2017 Mar 15;284(1850):null
pubmed: 28250183
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):451-69
pubmed: 23636808
Curr Biol. 2010 Jan 26;20(2):R55-6
pubmed: 20129037
Proc Biol Sci. 2017 Sep 27;284(1863):
pubmed: 28954917
Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98
pubmed: 42062
Ecol Lett. 2016 Jul;19(7):800-9
pubmed: 27264195
Anat Rec. 1999 Dec 15;257(6):217-24
pubmed: 10620751
Mol Biol Evol. 2014 Sep;31(9):2415-24
pubmed: 24951728
Curr Biol. 2018 Dec 3;28(23):3878-3885.e3
pubmed: 30449667
J Morphol. 2016 Jan;277(1):5-33
pubmed: 26450139
Nature. 2014 Apr 17;508(7496):383-6
pubmed: 24670659
Syst Biol. 2008 Dec;57(6):857-75
pubmed: 19085329
Proc Biol Sci. 2017 Feb 8;284(1848):
pubmed: 28179519
Proc Biol Sci. 2001 Mar 7;268(1466):549-56
pubmed: 11296868
Syst Biol. 2014 Sep;63(5):685-97
pubmed: 24789073
Curr Biol. 2017 Dec 18;27(24):3852-3858.e3
pubmed: 29225027
J Anat. 2016 Mar;228(3):366-83
pubmed: 26577069
PLoS One. 2015 Dec 17;10(12):e0142287
pubmed: 26678487
Sci Rep. 2018 May 18;8(1):7841
pubmed: 29777194
Science. 1966 Jan 28;151(3709):456-8
pubmed: 5902388
Evolution. 2017 Mar;71(3):633-649
pubmed: 28075012
Sci Rep. 2017 Oct 13;7(1):13176
pubmed: 29030580
J Exp Biol. 2005 Oct;208(Pt 19):3721-30
pubmed: 16169949
Biol Lett. 2018 Aug;14(8):
pubmed: 30068543
Nature. 2013 Oct 10;502(7470):228-31
pubmed: 24005325
PLoS One. 2015 Jan 29;10(1):e0116222
pubmed: 25633412
J Theor Biol. 2008 May 7;252(1):1-14
pubmed: 18321532
Curr Biol. 2016 Aug 22;26(16):2144-9
pubmed: 27498568