Bayesian inference of metabolic kinetics from genome-scale multiomics data.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
11 2019
Historique:
received: 01 04 2019
accepted: 19 09 2019
revised: 14 11 2019
pubmed: 5 11 2019
medline: 15 2 2020
entrez: 5 11 2019
Statut: epublish

Résumé

Modern biological tools generate a wealth of data on metabolite and protein concentrations that can be used to help inform new strain designs. However, learning from these data to predict how a cell will respond to genetic changes, a key need for engineering, remains challenging. A promising technique for leveraging omics measurements in metabolic modeling involves the construction of kinetic descriptions of the enzymatic reactions that occur within a cell. Parameterizing these models from biological data can be computationally difficult, since methods must also quantify the uncertainty in model parameters resulting from the observed data. While the field of Bayesian inference offers a wide range of methods for efficiently estimating distributions in parameter uncertainty, such techniques are poorly suited to traditional kinetic models due to their complex rate laws and resulting nonlinear dynamics. In this paper, we employ linear-logarithmic kinetics to simplify the calculation of steady-state flux distributions and enable efficient sampling and inference methods. We demonstrate that detailed information on the posterior distribution of parameters can be obtained efficiently at a variety of problem scales, including nearly genome-scale kinetic models trained on multiomics datasets. These results allow modern Bayesian machine learning tools to be leveraged in understanding biological data and in developing new, efficient strain designs.

Identifiants

pubmed: 31682600
doi: 10.1371/journal.pcbi.1007424
pii: PCOMPBIOL-D-19-00463
pmc: PMC6855570
doi:

Substances chimiques

Enzymes 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1007424

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Cell Syst. 2017 Dec 27;5(6):538-541
pubmed: 29284126
Cell. 2016 Mar 10;164(6):1185-1197
pubmed: 26967285
Metab Eng. 2009 Jul-Sep;11(4-5):221-33
pubmed: 19379820
Metab Eng. 2006 Mar;8(2):133-41
pubmed: 16414298
Eur J Biochem. 2004 Aug;271(16):3348-59
pubmed: 15291812
Curr Opin Biotechnol. 2014 Oct;29:39-45
pubmed: 24632194
Biophys J. 2017 Sep 5;113(5):1150-1162
pubmed: 28877496
ACS Synth Biol. 2017 Sep 15;6(9):1691-1700
pubmed: 28520394
Curr Opin Biotechnol. 2018 Dec;54:33-40
pubmed: 29448095
Metab Eng. 2004 Oct;6(4):391-400
pubmed: 15491867
Front Microbiol. 2019 Apr 05;10:597
pubmed: 31024467
FEBS J. 2007 Nov;274(21):5576-85
pubmed: 17922843
Metab Eng. 2006 Mar;8(2):142-59
pubmed: 16413809
PLoS Comput Biol. 2012;8(3):e1002415
pubmed: 22416224
Science. 2007 Apr 27;316(5824):593-7
pubmed: 17379776
Microbiology (Reading). 2010 Feb;156(Pt 2):287-301
pubmed: 19910409
PeerJ Comput Sci. 2023 Sep 1;9:e1516
pubmed: 37705656
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):222-227
pubmed: 29255023
Biophys J. 1973 Jun;13(6):503-11
pubmed: 4714445
Mol Biol Cell. 2010 Jan 1;21(1):198-211
pubmed: 19889834
Biochim Biophys Acta. 1980 Jul 8;591(2):488-93
pubmed: 7397133
Science. 2016 Oct 28;354(6311):
pubmed: 27789812
BMC Bioinformatics. 2006 Dec 21;7:540
pubmed: 17184531
Metab Eng. 2004 Oct;6(4):378-90
pubmed: 15491866
Eur J Biochem. 1995 Jan 15;227(1-2):194-201
pubmed: 7851386
Mol Syst Biol. 2017 Aug 3;13(8):935
pubmed: 28779005
Metab Eng. 2009 Jan;11(1):20-30
pubmed: 18718548
Biophys J. 2004 Dec;87(6):3750-63
pubmed: 15465856
Biotechnol J. 2013 Sep;8(9):1090-104
pubmed: 23450699
Metab Eng. 2014 Sep;25:50-62
pubmed: 24928774
Bioessays. 2010 May;32(5):422-9
pubmed: 20414900
Biotechnol Adv. 2017 Dec;35(8):981-1003
pubmed: 28916392
Metab Eng. 2002 Apr;4(2):114-23
pubmed: 12009791
Sci Rep. 2016 Jul 15;6:29635
pubmed: 27417285
Biophys J. 2007 Mar 1;92(5):1792-805
pubmed: 17172310
Curr Opin Biotechnol. 2015 Dec;36:57-64
pubmed: 26318076
Trends Biotechnol. 2010 Aug;28(8):391-7
pubmed: 20646768
Biophys J. 2008 Dec 15;95(12):5606-17
pubmed: 18820235
Nat Biotechnol. 2010 Mar;28(3):245-8
pubmed: 20212490
Metab Eng. 2003 Jul;5(3):164-76
pubmed: 12948750
Metab Eng. 2005 Mar;7(2):142-53
pubmed: 15781422

Auteurs

Peter C St John (PC)

Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America.

Jonathan Strutz (J)

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America.

Linda J Broadbelt (LJ)

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America.

Keith E J Tyo (KEJ)

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America.

Yannick J Bomble (YJ)

Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH