MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer.
Autophagy
/ drug effects
Cell Proliferation
/ drug effects
Colorectal Neoplasms
/ drug therapy
Disease-Free Survival
Female
Fluorouracil
/ pharmacology
Gene Expression Regulation, Neoplastic
/ drug effects
HT29 Cells
Heterografts
Humans
MAP Kinase Kinase 3
/ genetics
Male
Mitogen-Activated Protein Kinase 13
/ genetics
Signal Transduction
/ drug effects
Transcriptional Activation
/ drug effects
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
06 11 2019
06 11 2019
Historique:
received:
15
07
2019
accepted:
18
10
2019
revised:
04
10
2019
entrez:
8
11
2019
pubmed:
7
11
2019
medline:
28
8
2020
Statut:
epublish
Résumé
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and understanding its underlying molecular mechanisms is crucial for the development of therapeutic strategies. The mitogen-activated protein kinase-kinase 3 (MKK3) is a specific activator of p38 MAP kinases (p38 MAPKs), which contributes to the regulation of several cellular functions, such as proliferation, differentiation, apoptosis as well as response to drugs. At present, the exact MKK3/p38 MAPK pathway contribution in cancer is heavily debated because of its pleiotropic function. In this work, we retrospectively explored the prognostic and pathobiologic relevance of MKK3 in a cohort of CRC patients and assessed MKK3 molecular functions in a panel of CRC lines and colonocytes primary cultures. We found increased MKK3 levels in late-stage CRC patients which correlated with shorter overall survival. Herein, we report that the MKK3 targeting by inducible RNA interference univocally exerts antitumor effects in CRC lines but not in primary colonocytes. While MKK3 depletion per se affects growth and survival by induction of sustained autophagy and death in some CRC lines, it potentiates response to chemotherapeutic drug 5-fluorouracil (5-FU) in all of the tested CRC lines in vitro. Here, we demonstrate for the first time that in CRC the MKK3 specifically activates p38delta MAPK isoform to sustain prosurvival signaling and that such effect is exacerbated upon 5-FU challenge. Indeed, p38delta MAPK silencing recapitulates MKK3 depletion effects in CRC cells in vitro and in vivo. Overall, our data identified a molecular mechanism through which MKK3 supports proliferation and survival signaling in CRC, further supporting MKK3 as a novel and extremely attractive therapeutic target for the development of promising strategies for the management of CRC patients.
Identifiants
pubmed: 31695024
doi: 10.1038/s41419-019-2083-2
pii: 10.1038/s41419-019-2083-2
pmc: PMC6834673
doi:
Substances chimiques
Mitogen-Activated Protein Kinase 13
EC 2.7.1.-
MAP Kinase Kinase 3
EC 2.7.12.2
MAP2K3 protein, human
EC 2.7.12.2
Fluorouracil
U3P01618RT
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
842Références
FEBS Lett. 1997 Feb 10;403(1):19-22
pubmed: 9038352
J Clin Microbiol. 2002 Jan;40(1):105-10
pubmed: 11773101
Clin Cancer Res. 2016 Mar 1;22(5):1095-102
pubmed: 26581242
Genes Dev. 2003 Aug 15;17(16):1969-78
pubmed: 12893778
Virchows Arch. 2018 Apr;472(4):519-531
pubmed: 29209757
Am Soc Clin Oncol Educ Book. 2018 May 23;38:220-230
pubmed: 30231337
Aging (Albany NY). 2016 Jan;8(1):1-2
pubmed: 26805700
ACS Chem Biol. 2007 May 22;2(5):329-36
pubmed: 17465519
Front Cell Dev Biol. 2016 Apr 14;4:31
pubmed: 27148533
Cancer Res. 2014 Jan 1;74(1):162-72
pubmed: 24233520
Semin Cancer Biol. 2004 Aug;14(4):271-82
pubmed: 15219620
Cancer Lett. 2014 Mar 1;344(1):110-118
pubmed: 24215867
Cell Death Dis. 2015 Jan 29;6:e1621
pubmed: 25633290
J Biol Chem. 2005 May 20;280(20):19472-9
pubmed: 15755732
PLoS One. 2011;6(12):e28406
pubmed: 22164285
Cancer Res. 2006 Jul 1;66(13):6763-71
pubmed: 16818652
J Biol Chem. 2010 May 14;285(20):15149-58
pubmed: 20231272
Oncogene. 2012 Mar 1;31(9):1073-85
pubmed: 21841826
Nat Struct Mol Biol. 2013 Oct;20(10):1182-90
pubmed: 24037507
Mol Cancer Ther. 2012 Mar;11(3):561-71
pubmed: 22053010
Oncotarget. 2017 May 29;8(33):55684-55714
pubmed: 28903453
PLoS One. 2014 Jan 06;9(1):e84818
pubmed: 24400116
J Natl Compr Canc Netw. 2017 Mar;15(3):370-398
pubmed: 28275037
Methods Mol Biol. 2010;661:3-38
pubmed: 20811974
Cancers (Basel). 2018 May 03;10(5):
pubmed: 29751559
Cell Signal. 2016 Sep;28(9):1283-91
pubmed: 27181679
Bioorg Med Chem Lett. 2016 Feb 1;26(3):1086-1089
pubmed: 26704264
J Cell Sci. 2018 Jul 26;131(14):
pubmed: 29930081
Br J Cancer. 2010 Jul 27;103(3):340-6
pubmed: 20606684
J Cell Biochem. 2018 Nov;119(10):8472-8480
pubmed: 30011079
Biochem Biophys Res Commun. 2011 Mar 18;406(3):488-92
pubmed: 21338578
Trends Biochem Sci. 2017 Jun;42(6):431-442
pubmed: 28473179
Arthritis Rheum. 2012 Sep;64(9):2887-95
pubmed: 22488549
Science. 1995 Feb 3;267(5198):682-5
pubmed: 7839144
Cancer Lett. 2017 Jan 1;384:19-26
pubmed: 27725227
Cell Cycle. 2005 Sep;4(9):1189-92
pubmed: 16103752
Curr Pharm Des. 2016;22(16):2358-88
pubmed: 26947958
Cell Signal. 2010 Apr;22(4):660-7
pubmed: 20004242
Mol Cell Biol. 2013 Oct;33(19):3780-94
pubmed: 23878395
Oncogene. 2007 Aug 9;26(36):5267-79
pubmed: 17334397
Cancer Res. 2014 Nov 1;74(21):6150-60
pubmed: 25217523
J Biol Chem. 2010 May 7;285(19):14160-9
pubmed: 20223820