A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
02 2020
Historique:
received: 12 05 2018
accepted: 25 10 2019
revised: 23 10 2019
pubmed: 7 11 2019
medline: 25 11 2020
entrez: 8 11 2019
Statut: ppublish

Résumé

Mechanistic insight into signaling pathways downstream of surface receptors has been revolutionized with integrated cancer genomics. This has fostered current treatment modalities, namely immunotherapy, to capitalize on targeting key oncogenic signaling nodes downstream of a limited number of surface markers. Unfortunately, rudimentary mechanistic understanding of most other cell surface proteins has reduced the clinical utility of these markers. CD133 has reproducibly been shown to correlate with disease progression, recurrence, and poor overall survivorship in the malignant adult brain tumor, glioblastoma (GBM). Using several patient-derived CD133

Identifiants

pubmed: 31695152
doi: 10.1038/s41388-019-1086-x
pii: 10.1038/s41388-019-1086-x
doi:

Substances chimiques

AC133 Antigen 0
Proto-Oncogene Proteins c-akt EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1590-1599

Références

Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90:5002–12.
pubmed: 9389720 doi: 10.1182/blood.V90.12.5002
Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000;97:14720–5.
pubmed: 11121071 doi: 10.1073/pnas.97.26.14720 pmcid: 18985
Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A. Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood. 2009;113:3287–96.
pubmed: 19147788 doi: 10.1182/blood-2008-04-154187
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.
pubmed: 18371365 doi: 10.1016/j.stem.2007.06.002
O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.
pubmed: 17122772 doi: 10.1038/nature05372
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.
pubmed: 15549107 doi: 10.1038/nature03128
Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, et al. The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro-Oncol. 2013;15:1151–9.
pubmed: 23658323 pmcid: 3748916 doi: 10.1093/neuonc/not066
Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.
pubmed: 18172261 doi: 10.1158/1078-0432.CCR-07-0932
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell. 2010;17:98–110.
pubmed: 20129251 pmcid: 2818769 doi: 10.1016/j.ccr.2009.12.020
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA. 2013;110:6829–34.
pubmed: 23569237 doi: 10.1073/pnas.1217002110 pmcid: 3637720
Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297:365–9.
doi: 10.1126/science.1074192 pubmed: 12130776
Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12:1390–7.
pubmed: 19801986 pmcid: 5328673 doi: 10.1038/nn.2408
Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, et al. beta-catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther. 2011;11:753–61.
pubmed: 21321483 doi: 10.4161/cbt.11.8.14894
Zhang LY, Jiang LN, Li FF, Li H, Liu F, Gu Y, et al. Reduced beta-catenin expression is associated with good prognosis in Astrocytoma. Pathol Oncol Res. 2010;16:253–7.
pubmed: 20182836 doi: 10.1007/s12253-009-9219-0
Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2:951–63.
pubmed: 23084749 pmcid: 3590846 doi: 10.1016/j.celrep.2012.09.016
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.
pubmed: 9065402 doi: 10.1126/science.275.5307.1787
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.
pubmed: 24120142 pmcid: 3910500 doi: 10.1016/j.cell.2013.09.034
Hu B, Wang Q, Wang YA, Hua S, Sauve CG, Ong D, et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell. 2016;167:1281–1295 e1218.
pubmed: 27863244 pmcid: 5320931 doi: 10.1016/j.cell.2016.10.039
Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol cell. 2009;36:547–59.
pubmed: 19941816 pmcid: 2784926 doi: 10.1016/j.molcel.2009.09.034
Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45:253–61.
pubmed: 23354438 pmcid: 3729040 doi: 10.1038/ng.2538
Pulvirenti T, Van Der Heijden M, Droms LA, Huse JT, Tabar V, Hall A. Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res. 2011;71:7280–90.
pubmed: 21990322 pmcid: 3228897 doi: 10.1158/0008-5472.CAN-11-1531
Rheinbay E, Suva ML, Gillespie SM, Wakimoto H, Patel AP, Shahid M, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3:1567–79.
pubmed: 23707066 pmcid: 3774301 doi: 10.1016/j.celrep.2013.04.021
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011;480:118–22.
pubmed: 22056988 pmcid: 3235705 doi: 10.1038/nature10598
Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.
pubmed: 22014570 pmcid: 3199318 doi: 10.1016/j.ccr.2011.08.016
Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 2010;17:497–509.
pubmed: 20478531 pmcid: 2900858 doi: 10.1016/j.ccr.2010.03.020
Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. beta-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget. 2016;7:49435–49.
pubmed: 27384483 pmcid: 5226519 doi: 10.18632/oncotarget.10356
Lan X, Jorg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549:227–32.
pubmed: 28854171 pmcid: 5608080 doi: 10.1038/nature23666
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.
pubmed: 24925914 pmcid: 4123637 doi: 10.1126/science.1254257
Hambardzumyan D, Squatrito M, Carbajal E, Holland EC. Glioma formation, cancer stem cells, and akt signaling. Stem Cell Rev. 2008;4:203–10.
pubmed: 18595010 doi: 10.1007/s12015-008-9021-5
Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.
pubmed: 10802656 doi: 10.1038/75596
Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 2002;62:5551–8.
pubmed: 12359767
ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol. 2001;8:593–6.
pubmed: 11427888 doi: 10.1038/89624
Fuerer C, Nusse R. Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS ONE 2010;5:e9370.
pubmed: 20186325 pmcid: 2826402 doi: 10.1371/journal.pone.0009370
Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15:943–53.
pubmed: 25035291 doi: 10.1016/S1470-2045(14)70314-6
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.
pubmed: 28844499 doi: 10.1016/S1470-2045(17)30517-X
Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell. 2016;29:563–73.
pubmed: 27070703 pmcid: 4831071 doi: 10.1016/j.ccell.2016.03.012
Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet. 2000;9:27–34.
pubmed: 10587575 doi: 10.1093/hmg/9.1.27
Ng SS, Mahmoudi T, Danenberg E, Bejaoui I, de Lau W, Korswagen HC, et al. Phosphatidylinositol 3-kinase signaling does not activate the wnt cascade. J Biol Chem. 2009;284:35308–13.
pubmed: 19850932 pmcid: 2790960 doi: 10.1074/jbc.M109.078261
Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, et al. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem. 2001;276:17479–83.
pubmed: 11278246 doi: 10.1074/jbc.C000880200
Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.
pubmed: 28431241 pmcid: 5546324
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.
pubmed: 14522905

Auteurs

Branavan Manoranjan (B)

Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada.
McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.
Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

Chirayu Chokshi (C)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.
Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

Chitra Venugopal (C)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Minomi Subapanditha (M)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Neil Savage (N)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Nazanin Tatari (N)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.
Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

John P Provias (JP)

Departments of Pathology, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

Naresh K Murty (NK)

Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

Jason Moffat (J)

The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.

Bradley W Doble (BW)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada.
Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.

Sheila K Singh (SK)

McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada. ssingh@mcmaster.ca.
Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada. ssingh@mcmaster.ca.
Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada. ssingh@mcmaster.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH