A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
12
05
2018
accepted:
25
10
2019
revised:
23
10
2019
pubmed:
7
11
2019
medline:
25
11
2020
entrez:
8
11
2019
Statut:
ppublish
Résumé
Mechanistic insight into signaling pathways downstream of surface receptors has been revolutionized with integrated cancer genomics. This has fostered current treatment modalities, namely immunotherapy, to capitalize on targeting key oncogenic signaling nodes downstream of a limited number of surface markers. Unfortunately, rudimentary mechanistic understanding of most other cell surface proteins has reduced the clinical utility of these markers. CD133 has reproducibly been shown to correlate with disease progression, recurrence, and poor overall survivorship in the malignant adult brain tumor, glioblastoma (GBM). Using several patient-derived CD133
Identifiants
pubmed: 31695152
doi: 10.1038/s41388-019-1086-x
pii: 10.1038/s41388-019-1086-x
doi:
Substances chimiques
AC133 Antigen
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1590-1599Références
Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90:5002–12.
pubmed: 9389720
doi: 10.1182/blood.V90.12.5002
Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000;97:14720–5.
pubmed: 11121071
doi: 10.1073/pnas.97.26.14720
pmcid: 18985
Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A. Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood. 2009;113:3287–96.
pubmed: 19147788
doi: 10.1182/blood-2008-04-154187
Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.
pubmed: 18371365
doi: 10.1016/j.stem.2007.06.002
O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.
pubmed: 17122772
doi: 10.1038/nature05372
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.
pubmed: 15549107
doi: 10.1038/nature03128
Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, et al. The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro-Oncol. 2013;15:1151–9.
pubmed: 23658323
pmcid: 3748916
doi: 10.1093/neuonc/not066
Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14:123–9.
pubmed: 18172261
doi: 10.1158/1078-0432.CCR-07-0932
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell. 2010;17:98–110.
pubmed: 20129251
pmcid: 2818769
doi: 10.1016/j.ccr.2009.12.020
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA. 2013;110:6829–34.
pubmed: 23569237
doi: 10.1073/pnas.1217002110
pmcid: 3637720
Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297:365–9.
doi: 10.1126/science.1074192
pubmed: 12130776
Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12:1390–7.
pubmed: 19801986
pmcid: 5328673
doi: 10.1038/nn.2408
Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, et al. beta-catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther. 2011;11:753–61.
pubmed: 21321483
doi: 10.4161/cbt.11.8.14894
Zhang LY, Jiang LN, Li FF, Li H, Liu F, Gu Y, et al. Reduced beta-catenin expression is associated with good prognosis in Astrocytoma. Pathol Oncol Res. 2010;16:253–7.
pubmed: 20182836
doi: 10.1007/s12253-009-9219-0
Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2:951–63.
pubmed: 23084749
pmcid: 3590846
doi: 10.1016/j.celrep.2012.09.016
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.
pubmed: 9065402
doi: 10.1126/science.275.5307.1787
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.
pubmed: 24120142
pmcid: 3910500
doi: 10.1016/j.cell.2013.09.034
Hu B, Wang Q, Wang YA, Hua S, Sauve CG, Ong D, et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell. 2016;167:1281–1295 e1218.
pubmed: 27863244
pmcid: 5320931
doi: 10.1016/j.cell.2016.10.039
Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, et al. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol cell. 2009;36:547–59.
pubmed: 19941816
pmcid: 2784926
doi: 10.1016/j.molcel.2009.09.034
Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45:253–61.
pubmed: 23354438
pmcid: 3729040
doi: 10.1038/ng.2538
Pulvirenti T, Van Der Heijden M, Droms LA, Huse JT, Tabar V, Hall A. Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res. 2011;71:7280–90.
pubmed: 21990322
pmcid: 3228897
doi: 10.1158/0008-5472.CAN-11-1531
Rheinbay E, Suva ML, Gillespie SM, Wakimoto H, Patel AP, Shahid M, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3:1567–79.
pubmed: 23707066
pmcid: 3774301
doi: 10.1016/j.celrep.2013.04.021
Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011;480:118–22.
pubmed: 22056988
pmcid: 3235705
doi: 10.1038/nature10598
Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.
pubmed: 22014570
pmcid: 3199318
doi: 10.1016/j.ccr.2011.08.016
Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 2010;17:497–509.
pubmed: 20478531
pmcid: 2900858
doi: 10.1016/j.ccr.2010.03.020
Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. beta-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget. 2016;7:49435–49.
pubmed: 27384483
pmcid: 5226519
doi: 10.18632/oncotarget.10356
Lan X, Jorg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549:227–32.
pubmed: 28854171
pmcid: 5608080
doi: 10.1038/nature23666
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.
pubmed: 24925914
pmcid: 4123637
doi: 10.1126/science.1254257
Hambardzumyan D, Squatrito M, Carbajal E, Holland EC. Glioma formation, cancer stem cells, and akt signaling. Stem Cell Rev. 2008;4:203–10.
pubmed: 18595010
doi: 10.1007/s12015-008-9021-5
Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.
pubmed: 10802656
doi: 10.1038/75596
Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 2002;62:5551–8.
pubmed: 12359767
ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol. 2001;8:593–6.
pubmed: 11427888
doi: 10.1038/89624
Fuerer C, Nusse R. Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS ONE 2010;5:e9370.
pubmed: 20186325
pmcid: 2826402
doi: 10.1371/journal.pone.0009370
Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15:943–53.
pubmed: 25035291
doi: 10.1016/S1470-2045(14)70314-6
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.
pubmed: 28844499
doi: 10.1016/S1470-2045(17)30517-X
Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell. 2016;29:563–73.
pubmed: 27070703
pmcid: 4831071
doi: 10.1016/j.ccell.2016.03.012
Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet. 2000;9:27–34.
pubmed: 10587575
doi: 10.1093/hmg/9.1.27
Ng SS, Mahmoudi T, Danenberg E, Bejaoui I, de Lau W, Korswagen HC, et al. Phosphatidylinositol 3-kinase signaling does not activate the wnt cascade. J Biol Chem. 2009;284:35308–13.
pubmed: 19850932
pmcid: 2790960
doi: 10.1074/jbc.M109.078261
Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, et al. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem. 2001;276:17479–83.
pubmed: 11278246
doi: 10.1074/jbc.C000880200
Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.
pubmed: 28431241
pmcid: 5546324
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.
pubmed: 14522905