De novo CLTC variants are associated with a variable phenotype from mild to severe intellectual disability, microcephaly, hypoplasia of the corpus callosum, and epilepsy.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
04 2020
Historique:
received: 24 05 2019
accepted: 06 11 2019
revised: 14 10 2019
pubmed: 30 11 2019
medline: 28 4 2021
entrez: 29 11 2019
Statut: ppublish

Résumé

To delineate the genotype-phenotype correlation in individuals with likely pathogenic variants in the CLTC gene. We describe 13 individuals with de novo CLTC variants. Causality of variants was determined by using the tolerance landscape of CLTC and computer-assisted molecular modeling where applicable. Phenotypic abnormalities observed in the individuals identified with missense and in-frame variants were compared with those with nonsense or frameshift variants in CLTC. All de novo variants were judged to be causal. Combining our data with that of 14 previously reported affected individuals (n = 27), all had intellectual disability (ID), ranging from mild to moderate/severe, with or without additional neurologic, behavioral, craniofacial, ophthalmologic, and gastrointestinal features. Microcephaly, hypoplasia of the corpus callosum, and epilepsy were more frequently observed in individuals with missense and in-frame variants than in those with nonsense and frameshift variants. However, this difference was not significant. The wide phenotypic variability associated with likely pathogenic CLTC variants seems to be associated with allelic heterogeneity. The detailed clinical characterization of a larger cohort of individuals with pathogenic CLTC variants is warranted to support the hypothesis that missense and in-frame variants exert a dominant-negative effect, whereas the nonsense and frameshift variants would result in haploinsufficiency.

Identifiants

pubmed: 31776469
doi: 10.1038/s41436-019-0703-y
pii: S1098-3600(21)01146-1
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

797-802

Références

Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664–685.
doi: 10.1016/j.ajhg.2017.09.008
DeMari J, Mroske C, Tang S, Nimeh J, Miller R, Lebel RR. CLTC as a clinically novel gene associated with multiple malformations and developmental delay. Am J Med Genet A. 2016;170A:958–966.
doi: 10.1002/ajmg.a.37506
Manti F, Nardecchia F, Barresi S, et al. Neurotransmitter trafficking defect in a patient with clathrin (CLTC) variation presenting with intellectual disability and early-onset parkinsonism. Parkinsonism Relat Disord. 2019;61:207–210.
doi: 10.1016/j.parkreldis.2018.10.012
Lelieveld SH, Reijnders MR, Pfundt R, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19:1194–1196.
doi: 10.1038/nn.4352
Dodge GR, Kovalszky I, McBride OW, et al. Human clathrin heavy chain (CLTC): partial molecular cloning, expression, and mapping of the gene to human chromosome 17q11-qter. Genomics. 1991;11:174–178.
doi: 10.1016/0888-7543(91)90115-U
Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–326.
doi: 10.1038/nrm.2017.132
Royle SJ, Bright NA, Lagnado L. Clathrin is required for the function of the mitotic spindle. Nature. 2005;434:1152–1157.
doi: 10.1038/nature03502
Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol. 2008;182:1007–1016.
doi: 10.1083/jcb.200804162
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–930.
doi: 10.1002/humu.22844
Neveling K, Feenstra I, Gilissen C, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34:1721–1726.
doi: 10.1002/humu.22450
Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40:1030–1038.
doi: 10.1002/humu.23892
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291.
doi: 10.1038/nature19057
Fotin A, Cheng Y, Sliz P, et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature. 2004;432:573–579.
doi: 10.1038/nature03079
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins. 2002;47:393–402.
doi: 10.1002/prot.10104
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–315.
doi: 10.1038/ng.2892
Wilbur JD, Hwang PK, Ybe JA, et al. Conformation switching of clathrin light chain regulates clathrin lattice assembly. Dev Cell. 2010;18:841–848.
doi: 10.1016/j.devcel.2010.04.007
Bosch DG, Boonstra FN, de Leeuw N, et al. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet. 2016;24:660–665.
doi: 10.1038/ejhg.2015.186

Auteurs

Maria J Nabais Sá (MJ)

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands.

Hanka Venselaar (H)

Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands.

Laurens Wiel (L)

Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands.
Department of Human Genetics, RIMLS, Radboudumc, Nijmegen, The Netherlands.

Aurélien Trimouille (A)

Department of Medical Genetics, CHU Bordeaux, Bordeaux, France.
Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), Inserm U1211, Bordeaux, France.

Eulalie Lasseaux (E)

Department of Medical Genetics, CHU Bordeaux, Bordeaux, France.

Sophie Naudion (S)

Department of Medical Genetics, CHU Bordeaux, Bordeaux, France.

Didier Lacombe (D)

Department of Medical Genetics, CHU Bordeaux, Bordeaux, France.
Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), Inserm U1211, Bordeaux, France.

Amélie Piton (A)

Institut de Genetique et de Biologie Moleculaire et Cellulaire, Illkirch-Graffenstaden, France.
INSERM U964, Illkirch-Graffenstaden, France.

Catherine Vincent-Delorme (C)

Service de Génétique Clinique Guy Fontaine Hôpital Jeanne de Flandre, CHRU, Lille, France.

Christiane Zweier (C)

Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

André Reis (A)

Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Regina Trollmann (R)

Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Anna Ruiz (A)

Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.

Elisabeth Gabau (E)

Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.

Annalisa Vetro (A)

Meyer Children's Hospital, University of Florence, Florence, Italy.

Renzo Guerrini (R)

Meyer Children's Hospital, University of Florence, Florence, Italy.

Somayeh Bakhtiari (S)

Barrow Neurological Institute, Phoenix Children's Hospital & University of Arizona College of Medicine, Phoenix, AZ, USA.

Michael C Kruer (MC)

Barrow Neurological Institute, Phoenix Children's Hospital & University of Arizona College of Medicine, Phoenix, AZ, USA.

David J Amor (DJ)

Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia.
Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.

Monica S Cooper (MS)

Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia.
Department of Neurodevelopment & Disability, Royal Children's Hospital, Melbourne, Australia.

Emilia K Bijlsma (EK)

Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Tahsin Stefan Barakat (TS)

Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Marieke F van Dooren (MF)

Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Marjon van Slegtenhorst (M)

Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Rolph Pfundt (R)

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands.

Christian Gilissen (C)

Department of Human Genetics, RIMLS, Radboudumc, Nijmegen, The Netherlands.

Michèl A Willemsen (MA)

Department of Pediatric Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, Nijmegen, The Netherlands.

Bert B A de Vries (BBA)

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands.

Arjan P M de Brouwer (APM)

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands.

David A Koolen (DA)

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands. david.koolen@radboudumc.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH