Structural dissection of amyloid aggregates of TDP-43 and its C-terminal fragments TDP-35 and TDP-16.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
06 2020
Historique:
received: 12 02 2019
revised: 17 10 2019
accepted: 27 11 2019
pubmed: 30 11 2019
medline: 27 4 2021
entrez: 30 11 2019
Statut: ppublish

Résumé

The TAR DNA-binding protein (TDP-43) self-assembles into prion-like aggregates considered to be the structural hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we use a combination of electron microscopy, X-ray fiber diffraction, Fourier-transform infrared spectroscopy analysis, and solid-state NMR spectroscopy to investigate the molecular organization of different TDP constructs, namely the full-length TDP-43 (1-414), two C-terminal fragments [TDP-35 (90-414) and TDP-16 (267-414)], and a C-terminal truncated fragment (TDP-43 ∆GaroS2), in their fibrillar state. Although the different protein constructs exhibit similar fibril morphology and a typical cross-β signature by X-ray diffraction, solid-state NMR indicates that TDP-43 and TDP-35 share the same polymorphic molecular structure, while TDP-16 encompasses a well-ordered amyloid core. We identified several residues in the so-called C-terminal GaroS2 (368-414) domain that participates in the rigid core of TDP-16 fibrils, underlining its importance during the aggregation process. Our findings demonstrate that C-terminal fragments can adopt a different molecular conformation in isolation or in the context of the full-length assembly, suggesting that the N-terminal domain and RRM domains play an important role in the TDP-43 amyloid transition.

Identifiants

pubmed: 31782904
doi: 10.1111/febs.15159
doi:

Substances chimiques

Amyloid 0
DNA-Binding Proteins 0
Protein Aggregates 0
TARDBP protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2449-2467

Informations de copyright

© 2019 Federation of European Biochemical Societies.

Références

Eisenberg DS & Sawaya MR (2017) Structural studies of amyloid proteins at the molecular level. Annu Rev Biochem 86, 69-95.
Dobson CM (2017) The amyloid phenomenon and its links with human disease. Cold Spring Harb Perspect Biol 9.
Selkoe DJ & Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8, 595-608.
Stubbs G & Stohr J (2017) Structural biology of PrP prions. Cold Spring Harb Perspect Med 7.
Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB & Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273, 729-739.
Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R & Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523-1526.
Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R & Ishii Y (2015) Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat Struct Mol Biol 22, 499-505.
Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B, Wall J, Linse S et al. (2016) Atomic resolution structure of monomorphic Abeta42 amyloid fibrils. J Am Chem Soc 138, 9663-9674.
Walti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Bockmann A, Guntert P, Meier BH & Riek R (2016) Atomic-resolution structure of a disease-relevant Abeta(1-42) amyloid fibril. Proc Natl Acad Sci USA 113, E4976-E4984.
Murray DT, Kato M, Lin Y, Thurber KR, Hung I, McKnight SL & Tycko R (2017) Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615-627.e16.
Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M & Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547, 185-190.
Gremer L, Scholzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H et al. (2017) Fibril structure of amyloid-beta(1-42) by cryo-electron microscopy. Science 358, 116-119.
Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23, 1528-1539.
Neary D, Snowden JS & Mann DM (2000) Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). J Neurol Sci 180, 15-20.
Da Cruz S & Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21, 904-919.
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133.
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351, 602-611.
Ou SH, Wu F, Harrich D, Garcia-Martinez LF & Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69, 3584-3596.
Negash S, Xie S, Davatzikos C, Clark CM, Trojanowski JQ, Shaw LM, Wolk DA & Arnold SE (2013) Cognitive and functional resilience despite molecular evidence of Alzheimer's disease pathology. Alzheimers Dement 9, e89-e95.
Ratti A & Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1), 95-111.
Conicella AE, Zerze GH, Mittal J & Fawzi NL (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537-1549.
Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH, Rohatgi R et al. (2018) A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37.
Guenther EL, Cao Q, Trinh H, Lu J, Sawaya MR, Cascio D, Boyer DR, Rodriguez JA, Hughes MP & Eisenberg DS (2018) Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol 25, 463-471.
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T & Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133.
Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G et al. (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768-779.
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J et al. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753-767.
Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J & Fawzi NL (2018) Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell 69, 465-479.e7.
Hyman AA, Weber CA & Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30, 39-58.
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L et al. (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28, 420-435.
Buchan JR & Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36, 932-941.
Anderson P & Kedersha N (2009) Stress granules. Curr Biol 19, R397-R398.
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672.
Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205-1208.
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467-473.
Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J & Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284, 20329-20339.
Budini M, Romano V, Quadri Z, Buratti E & Baralle FE (2015) TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum Mol Genet 24, 9-20.
Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY, Chou SC, Lin V et al. (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5, 4824.
Qin H, Lim LZ, Wei Y & Song J (2014) TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl Acad Sci USA 111, 18619-18624.
Mompean M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E & Laurents DV (2016) The TDP-43 N-terminal domain structure at high resolution. FEBS J 283, 1242-1260.
Tsoi PS, Choi KJ, Leonard PG, Sizovs A, Moosa MM, MacKenzie KR, Ferreon JC & Ferreon ACM (2017) The N-terminal domain of ALS-linked tdp-43 assembles without misfolding. Angew Chem Int Ed Engl 56, 12590-12593.
Chang CK, Wu TH, Wu CY, Chiang MH, Toh EK, Hsu YC, Lin KF, Liao YH, Huang TH & Huang JJ (2012) The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity. Biochem Biophys Res Commun 425, 219-224.
Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ & Lee VM (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283, 13302-13309.
Zhang YJ, Caulfield T, Xu YF, Gendron TF, Hubbard J, Stetler C, Sasaguri H, Whitelaw EC, Cai S, Lee WC et al. (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 22, 3112-3122.
Sasaguri H, Chew J, Xu YF, Gendron TF, Garrett A, Lee CW, Jansen-West K, Bauer PO, Perkerson EA, Tong J et al. (2016) The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo. Brain Res 1647, 57-64.
Ayala YM, Pantano S, D'Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE, Human Drosophila & C. (2005) elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348, 575-588.
Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF & Allain FH (2013) Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20, 1443-1449.
Pillai M & Jha SK (2018) The folding and aggregation energy landscapes of tethered RRM domains of human TDP-43 are coupled via a metastable molten globule-like oligomer. Biochemistry 58, 608-620.
Mackness BC, Tran MT, McClain SP, Matthews CR & Zitzewitz JA (2014) Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state. J Biol Chem 289, 8264-8276.
Tavella D, Zitzewitz JA & Massi F (2018) Characterization of TDP-43 RRM2 partially folded states and their significance to ALS pathogenesis. Biophys J 115, 1673-1680.
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64, 60-70.
Lim L, Wei Y, Lu Y & Song J (2016) ALS-causing mutations significantly perturb the self-assembly and interaction with nucleic acid of the intrinsically disordered prion-like domain of TDP-43. PLoS Biol 14, e1002338.
Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM & Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280, 37572-37584.
Lagier-Tourenne C & Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136, 1001-1004.
Kwon MJ, Baek W, Ki CS, Kim HY, Koh SH, Kim JW & Kim SH 2012) Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol Aging 33, 1017.e17-e23.
Buratti E (2015) Functional significance of TDP-43 mutations in disease. Adv Genet 91, 1-53.
Jiang LL, Zhao J, Yin XF, He WT, Yang H, Che MX & Hu HY (2016) Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci Rep 6, 23928.
Mompean M, Hervas R, Xu Y, Tran TH, Guarnaccia C, Buratti E, Baralle F, Tong L, Carrion-Vazquez M, McDermott AE et al. (2015) Structural evidence of amyloid fibril formation in the putative aggregation domain of TDP-43. J Phys Chem Lett 6, 2608-2615.
Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH & Eisenberg DS (2018) Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat Struct Mol Biol 25, 311-319.
Cao Q, Boyer DR, Sawaya MR, Ge P & Eisenberg DS (2019) Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat Struct Mol Biol 26, 619-627.
Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H et al. (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4, 124-134.
King OD, Gitler AD & Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462, 61-80.
Wickner RB (2016) Yeast and fungal prions. Cold Spring Harb Perspect Biol 8.
Shewmaker F, Wickner RB & Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 103, 19754-19759.
Luckgei N, Schutz AK, Bousset L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R & Bockmann A (2013) The conformation of the prion domain of Sup35p in isolation and in the full-length protein. Angew Chem Int Ed Engl 52, 12741-12744.
Li Q, Yokoshi M, Okada H & Kawahara Y (2015) The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat Commun 6, 6183.
Cohen TJ, Hwang AW, Restrepo CR, Yuan CX, Trojanowski JQ & Lee VM (2015) An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6, 5845.
Tycko R & Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46, 1487-1496.
Tang M, Comellas G & Rienstra CM (2013) Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 46, 2080-2088.
Meier BH, Riek R & Bockmann A (2017) Emerging structural understanding of amyloid fibrils by solid-state NMR. Trends Biochem Sci 42, 777-787.
van der Wel PCA (2017) Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. Solid State Nucl Magn Reson 88, 1-14.
Linser R (2017) Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. Solid State Nucl Magn Reson 87, 45-53.
Loquet A, El Mammeri N, Stanek J, Berbon M, Bardiaux B, Pintacuda G & Habenstein B (2018) 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138-139, 26-38.
Mompean M, Baralle M, Buratti E & Laurents DV (2016) An amyloid-like pathological conformation of TDP-43 is stabilized by hypercooperative hydrogen bonds. Front Mol Neurosci 9, 125.
Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L et al. (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18, 822-830.
Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AO & Riekel C (2006) The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc Chem Res 39, 568-575.
Riek R (2017) The three-dimensional structures of amyloids. Cold Spring Harb Perspect Biol 9.
Tycko R (2006) Characterization of amyloid structures at the molecular level by solid state nuclear magnetic resonance spectroscopy. Methods Enzymol 413, 103-122.
Matlahov I & van der Wel PCA (2018) Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148, 123-135.
Siemer AB, Ritter C, Ernst M, Riek R & Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed 44, 2441-2444.
Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D & Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length. Proc Natl Acad Sci USA 102, 15871-15876.
Goormaghtigh E, Cabiaux V & Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem 23, 405-450.
Luca S, Filippov DV, van Boom JH, Oschkinat H, de Groot HJ & Baldus M (2001) Secondary chemical shifts in immobilized peptides and proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol NMR 20, 325-331.
Nishihira Y, Tan CF, Onodera O, Toyoshima Y, Yamada M, Morita T, Nishizawa M, Kakita A & Takahashi H (2008) Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol 116, 169-182.
Mori F, Tanji K, Zhang HX, Nishihira Y, Tan CF, Takahashi H & Wakabayashi K (2008) Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol 116, 193-203.
Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schutz A, Meier BH, Melki R & Bockmann A (2009) Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded modules. J Mol Biol 394, 108-118.
Habenstein B, Bousset L, Sourigues Y, Kabani M, Loquet A, Meier BH, Melki R & Bockmann A (2012) A native-like conformation for the C-terminal domain of the prion Ure2p within its fibrillar form. Angew Chem Int Ed Engl 51, 7963-7966.
Wasmer C, Schutz A, Loquet A, Buhtz C, Greenwald J, Riek R, Bockmann A & Meier BH (2009) The molecular organization of the fungal prion HET-s in its amyloid form. J Mol Biol 394, 119-127.
Morgan BR, Zitzewitz JA & Massi F (2017) Structural rearrangement upon fragmentation of the stability core of the ALS-linked protein TDP-43. Biophys J 113, 540-549.
Harrison AF & Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474, 1417-1438.
Wang W, Wang L, Lu J, Siedlak SL, Fujioka H, Liang J, Jiang S, Ma X, Jiang Z, da Rocha EL et al. (2016) The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med 22, 869-878.
Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, Stewart H, Kelley BJ, Kuntz K, Crook RJ et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4, e1000193.
Nelson O, Tu H, Lei T, Bentahir M, de Strooper B & Bezprozvanny I (2007) Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 117, 1230-1239.
Li HR, Chiang WC, Chou PC, Wang WJ & Huang JR (2018) TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 293, 6090-6098.
Jiang LL, Xue W, Hong JY, Zhang JT, Li MJ, Yu SN, He JH & Hu HY (2017) The N-terminal dimerization is required for TDP-43 splicing activity. Sci Rep 7, 6196.
Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z, Pluckthun A, Mittl P et al. (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 8, 45.
Mompean M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E & Laurents DV (2017) Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions. J Biol Chem 292, 11992-12006.
Vogler TO, Wheeler JR, Nguyen ED, Hughes MP, Britson KA, Lester E, Rao B, Betta ND, Whitney ON, Ewachiw TE et al. (2018) TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature 563, 508-513.

Auteurs

Jayakrishna Shenoy (J)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Nadia El Mammeri (N)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Antoine Dutour (A)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Mélanie Berbon (M)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Ahmad Saad (A)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Alons Lends (A)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Estelle Morvan (E)

Université de Bordeaux, CNRS, INSERM, UMS3033, Institut Européen de Chimie et Biologie (IECB), Pessac, France.

Axelle Grélard (A)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Sophie Lecomte (S)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Brice Kauffmann (B)

Université de Bordeaux, CNRS, INSERM, UMS3033, Institut Européen de Chimie et Biologie (IECB), Pessac, France.

François-Xavier Theillet (FX)

Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France.

Birgit Habenstein (B)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Antoine Loquet (A)

CBMN (UMR5248), Université de Bordeaux - CNRS - IPB, Institut Européen de Chimie et Biologie, Pessac, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH