Characterization of a novel Yersinia ruckeri serotype O1-specific bacteriophage with virulence-neutralizing activity.


Journal

Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188

Informations de publication

Date de publication:
Feb 2020
Historique:
received: 09 10 2019
revised: 12 11 2019
accepted: 14 11 2019
pubmed: 13 12 2019
medline: 21 7 2020
entrez: 13 12 2019
Statut: ppublish

Résumé

A lytic bacteriophage (φNC10) specific to serotype O1 Yersinia ruckeri has been identified and evaluated as a model to assess the potential use of bacteriophages and their products for disease control in aquaculture. Electron microscopy of purified φNC10 revealed a virion particle with a small (70 nm) polyhedral head and short tail. φNC10 infected only serotype O1 strains of Y. ruckeri and failed to bind a defined Y. ruckeri mutant strain lacking O1 lipopolysaccharides (O1-LPS), suggesting that φNC10 uses O1-LPS as its receptor. In addition, spontaneous φNC10-resistant mutants of Y. ruckeri exhibited defects in O1-LPS production and were sensitive to rainbow trout serum. Purified φNC10 displayed a polysaccharide depolymerase activity capable of degrading Y. ruckeri O1-LPS and thereby sensitizing Y. ruckeri to the bactericidal effects of rainbow trout serum. The φNC10-associated polysaccharide depolymerase activity also reduced the ability of Y. ruckeri cells to cause mortality following intraperitoneal injection into rainbow trout. These data demonstrate a potential utility of φNC10 and its associated polysaccharide depolymerase activity for Y. ruckeri disease prevention.

Identifiants

pubmed: 31828808
doi: 10.1111/jfd.13124
doi:

Substances chimiques

Lipopolysaccharides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

285-293

Subventions

Organisme : USDA/ARS
ID : 1930-32000-005-00

Informations de copyright

Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

Références

Ackermann, H. W., & Prangishvili, D. (2012). Prokaryote viruses studied by electron microscopy. Archives of Virology, 157(10), 1843-1849. https://doi.org/10.1007/s00705-012-1383-y
Adams, M. H. (1950). Methods of study of bacterial viruses - Introduction. Methods in Medical Research, 2(1), 1-2.
Amaro, C., Fouz, B., Biosca, E. G., Marco-Noales, E., & Collado, R. (1997). The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infection and Immunity, 65(6), 2475-2479.
Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4), https://doi.org/10.1093/femsle/fnw002
Bessler, W., Fehmel, F., Freund-Molbert, E., Knufermann, H., & Stirm, S. (1975). Escherichia coli capsule bacteriophages. IV. Free capsule depolymerase 29. Journal of Virology, 15(4), 976-984.
Boesen, H. T., Pedersen, K., Larsen, J. L., Koch, C., & Ellis, A. E. (1999). Vibrio anguillarum resistance to rainbow trout (Oncorhynchus mykiss) serum: Role of O-antigen structure of lipopolysaccharide. Infection and Immunity, 67(1), 294-301.
Busch, (1978). Enteric red mouth disease (Hagerman strain). Marine Fisheries Review, 40, 467-472.
Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dolz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7), e127-e133. https://doi.org/10.1016/S1473-3099(16)00100-6
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dolz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134
Casey, E., van Sinderen, D., & Mahony, J. (2018). In vitro characteristics of phages to guide ‘Real Life’ phage therapy suitability. Viruses, 10(4), E163. https://doi.org/10.3390/v10040163
Christiansen, R. H., Dalsgaard, I., Middelboe, M., Lauritsen, A. H., & Madsen, L. (2014). Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: Implications for disease control in aquaculture. Applied and Environment Microbiology, 80(24), 7683-7693. https://doi.org/10.1128/AEM.02386-14
Davies, R. L. (1991). Clonal analysis of Yersinia ruckeri based on biotypes, serotypes and outer membrane protein-types. Journal of Fish Diseases, 14(2), 221-228. https://doi.org/10.1111/j.1365-2761.1991.tb00591.x
Davies, R. L., & Frerichs, G. N. (1989). Morphological and biochemical differences among isolates of Yersinia ruckeri obtained from wide geographical areas. Journal of Fish Diseases, 12, 357-365. https://doi.org/10.1111/j.1365-2761.1989.tb00324.x
Horne, M. T., & Barnes, A. C. (1999). Enteric redmouth disease (Yersinia ruckeri). In P. K. T. Woo, & D. W. Bruno (Eds.), Fish diseases and disorders. Vol. 3. Viral, bacterial and fungal infections (pp. 445-477). Wallingford, UK: CABI Publishing.
Joiner, K. A., Hammer, C. H., Brown, E. J., Cole, R. J., & Frank, M. M. (1982). Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. Journal of Experimental Medicine, 155(3), 797-808. https://doi.org/10.1084/jem.155.3.797
Laanto, E., Bamford, J. K., Ravantti, J. J., & Sundberg, L. R. (2015). The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Frontiers in Microbiology, 6, 829. https://doi.org/10.3389/fmicb.2015.00829
Latka, A., Maciejewska, B., Majkowska-Skrobek, G., Briers, Y., & Drulis-Kawa, Z. (2017). Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology, 101(8), 3103-3119. https://doi.org/10.1007/s00253-017-8224-6
Lawrence, M. L., Banes, M. M., Azadi, P., & Reeks, B. Y. (2003). The Edwardsiella ictaluri O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Microbiology, 149(Pt 6), 1409-1421. https://doi.org/10.1099/mic.0.26138-0
Lin, T.-L., Hsieh, P.-F., Huang, Y.-T., Lee, W.-C., Tsai, Y.-T., Su, P.-A., … Wang, J.-T. (2014). Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: Implication in typing and treatment. Journal of Infectious Diseases, 210(11), 1734-1744. https://doi.org/10.1093/infdis/jiu332
Luo, X., Liao, G., Liu, C., Jiang, X., Lin, M., Zhao, C., & Huang, Z. (2018). Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. Journal of Fish Diseases, 41(10), 1477-1484. https://doi.org/10.1111/jfd.12838
Majkowska-Skrobek, G., Latka, A., Berisio, R., Squeglia, F., Maciejewska, B., Briers, Y., & Drulis-Kawa, Z. (2018). Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Frontiers in Microbiology, 9, 2517. https://doi.org/10.3389/fmicb.2018.02517
Maniatis, T., Sambrook, J., Fritsch, E. F., & Cold Spring Harbor Laboratory (1982). Molecular cloning: a laboratory manual. In T. Maniatis, E. F. Fritsch, & J. Sambrook (Eds.), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Mushtaq, N., Redpath, M. B., Luzio, J. P., & Taylor, P. W. (2004). Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrobial Agents and Chemotherapy, 48(5), 1503-1508. https://doi.org/10.1128/aac.48.5.1503-1508.2004
Mushtaq, N., Redpath, M. B., Luzio, J. P., & Taylor, P. W. (2005). Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. Journal of Antimicrobial Chemotherapy, 56(1), 160-165. https://doi.org/10.1093/jac/dki177
Nakai, T., Sugimoto, R., Park, K. H., Matsuoka, S., Mori, K., Nishioka, T., & Maruyama, K. (1999). Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Diseases of Aquatic Organisms, 37(1), 33-41. https://doi.org/10.3354/dao037033
Oliveira, H., Mendes, A., Fraga, A. G., Ferreira, A., Pimenta, A. I., Mil-Homens, D., … Azeredo, J. (2019). K2 capsule depolymerase is highly stable, is refractory to resistance, and protects larvae and mice from Acinetobacter baumannii sepsis. Applied and Environment Microbiology, 85(17), 1-12. https://doi.org/10.1128/AEM.00934-19
Preston, A., Mandrell, R. E., Gibson, B. W., & Apicella, M. A. (1996). The lipooligosaccharides of pathogenic gram-negative bacteria. Critical Reviews in Microbiology, 22(3), 139-180. https://doi.org/10.3109/10408419609106458
Pyle, S. W., & Schill, W. B. (1985). Rapid serological analysis of bacterial lipopolysaccharides by electrotransfer to nitrocellulose. Journal of Immunological Methods, 85(2), 371-382. https://doi.org/10.1016/0022-1759(85)90146-2
Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology. Bacteriophage, 4(4), e975540. https://doi.org/10.4161/21597081.2014.975540
Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
Schill, W. B., Phelps, S. R., & Pyle, S. W. (1984). Multilocus electrophoretic assessment of the genetic structure and diversity of Yersinia ruckeri. Applied and Environment Microbiology, 48(5), 975-979.
Smith, H. W., & Huggins, M. B. (1982). Successful treatment of experimental Escherichia coli infections in mice using phage: Its general superiority over antibiotics. Journal of General Microbiology, 128(2), 307-318. https://doi.org/10.1099/00221287-128-2-307
Smith, H. W., & Huggins, M. B. (1983). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Journal of General Microbiology, 129(8), 2659-2675. https://doi.org/10.1099/00221287-129-8-2659
Smith, H. W., Huggins, M. B., & Shaw, K. M. (1987a). The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Journal of General Microbiology, 133(5), 1111-1126. https://doi.org/10.1099/00221287-133-5-1111
Smith, H. W., Huggins, M. B., & Shaw, K. M. (1987b). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Journal of General Microbiology, 133(5), 1127-1135. https://doi.org/10.1099/00221287-133-5-1127
Stenholm, A. R., Dalsgaard, I., & Middelboe, M. (2008). Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Applied and Environment Microbiology, 74(13), 4070-4078. https://doi.org/10.1128/AEM.00428-08
Summers, W. C. (2001). Bacteriophage therapy. Annual Review of Microbiology, 55, 437-451. https://doi.org/10.1146/annurev.micro.55.1.437
Torres-Barcelo, C. (2018). Phage therapy faces evolutionary challenges. Viruses, 10(6), https://doi.org/10.3390/v10060323
Welch, T. J., & Crosa, J. H. (2005). Novel role of the lipopolysaccharide O1 side chain in ferric siderophore transport and virulence of Vibrio anguillarum. Infection and Immunity, 73(9), 5864-5872. https://doi.org/10.1128/IAI.73.9.5864-5872.2005
Welch, T. J., & LaPatra, S. (2016). Yersinia ruckeri lipopolysaccharide is necessary and sufficient for eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish & Shellfish Immunology, 49, 420-426. https://doi.org/10.1016/j.fsi.2015.12.037
Welch, T. J., & Wiens, G. D. (2005). Construction of a virulent, green fluorescent protein-tagged Yersinia ruckeri and detection in trout tissues after intraperitoneal and immersion challenge. Diseases of Aquatic Organisms, 67(3), 267-272. https://doi.org/10.3354/dao067267
Wheeler, R. W., Davies, R. L., Dalsgaard, I., Garcia, J., Welch, T. J., Wagley, S., … Verner-Jeffreys, D. W. (2009). Yersinia ruckeri biotype 2 isolates from mainland Europe and the UK likely represent different clonal groups. Diseases of Aquatic Organisms, 84(1), 25-33. https://doi.org/10.3354/dao02039

Auteurs

Timothy J Welch (TJ)

Agricultural Research Service/U.S. Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH