Characterization of a novel Yersinia ruckeri serotype O1-specific bacteriophage with virulence-neutralizing activity.
Yersinia ruckeri
LPS depolymerase
fish disease
phage therapy
Journal
Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188
Informations de publication
Date de publication:
Feb 2020
Feb 2020
Historique:
received:
09
10
2019
revised:
12
11
2019
accepted:
14
11
2019
pubmed:
13
12
2019
medline:
21
7
2020
entrez:
13
12
2019
Statut:
ppublish
Résumé
A lytic bacteriophage (φNC10) specific to serotype O1 Yersinia ruckeri has been identified and evaluated as a model to assess the potential use of bacteriophages and their products for disease control in aquaculture. Electron microscopy of purified φNC10 revealed a virion particle with a small (70 nm) polyhedral head and short tail. φNC10 infected only serotype O1 strains of Y. ruckeri and failed to bind a defined Y. ruckeri mutant strain lacking O1 lipopolysaccharides (O1-LPS), suggesting that φNC10 uses O1-LPS as its receptor. In addition, spontaneous φNC10-resistant mutants of Y. ruckeri exhibited defects in O1-LPS production and were sensitive to rainbow trout serum. Purified φNC10 displayed a polysaccharide depolymerase activity capable of degrading Y. ruckeri O1-LPS and thereby sensitizing Y. ruckeri to the bactericidal effects of rainbow trout serum. The φNC10-associated polysaccharide depolymerase activity also reduced the ability of Y. ruckeri cells to cause mortality following intraperitoneal injection into rainbow trout. These data demonstrate a potential utility of φNC10 and its associated polysaccharide depolymerase activity for Y. ruckeri disease prevention.
Substances chimiques
Lipopolysaccharides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
285-293Subventions
Organisme : USDA/ARS
ID : 1930-32000-005-00
Informations de copyright
Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Références
Ackermann, H. W., & Prangishvili, D. (2012). Prokaryote viruses studied by electron microscopy. Archives of Virology, 157(10), 1843-1849. https://doi.org/10.1007/s00705-012-1383-y
Adams, M. H. (1950). Methods of study of bacterial viruses - Introduction. Methods in Medical Research, 2(1), 1-2.
Amaro, C., Fouz, B., Biosca, E. G., Marco-Noales, E., & Collado, R. (1997). The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infection and Immunity, 65(6), 2475-2479.
Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4), https://doi.org/10.1093/femsle/fnw002
Bessler, W., Fehmel, F., Freund-Molbert, E., Knufermann, H., & Stirm, S. (1975). Escherichia coli capsule bacteriophages. IV. Free capsule depolymerase 29. Journal of Virology, 15(4), 976-984.
Boesen, H. T., Pedersen, K., Larsen, J. L., Koch, C., & Ellis, A. E. (1999). Vibrio anguillarum resistance to rainbow trout (Oncorhynchus mykiss) serum: Role of O-antigen structure of lipopolysaccharide. Infection and Immunity, 67(1), 294-301.
Busch, (1978). Enteric red mouth disease (Hagerman strain). Marine Fisheries Review, 40, 467-472.
Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dolz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7), e127-e133. https://doi.org/10.1016/S1473-3099(16)00100-6
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dolz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134
Casey, E., van Sinderen, D., & Mahony, J. (2018). In vitro characteristics of phages to guide ‘Real Life’ phage therapy suitability. Viruses, 10(4), E163. https://doi.org/10.3390/v10040163
Christiansen, R. H., Dalsgaard, I., Middelboe, M., Lauritsen, A. H., & Madsen, L. (2014). Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: Implications for disease control in aquaculture. Applied and Environment Microbiology, 80(24), 7683-7693. https://doi.org/10.1128/AEM.02386-14
Davies, R. L. (1991). Clonal analysis of Yersinia ruckeri based on biotypes, serotypes and outer membrane protein-types. Journal of Fish Diseases, 14(2), 221-228. https://doi.org/10.1111/j.1365-2761.1991.tb00591.x
Davies, R. L., & Frerichs, G. N. (1989). Morphological and biochemical differences among isolates of Yersinia ruckeri obtained from wide geographical areas. Journal of Fish Diseases, 12, 357-365. https://doi.org/10.1111/j.1365-2761.1989.tb00324.x
Horne, M. T., & Barnes, A. C. (1999). Enteric redmouth disease (Yersinia ruckeri). In P. K. T. Woo, & D. W. Bruno (Eds.), Fish diseases and disorders. Vol. 3. Viral, bacterial and fungal infections (pp. 445-477). Wallingford, UK: CABI Publishing.
Joiner, K. A., Hammer, C. H., Brown, E. J., Cole, R. J., & Frank, M. M. (1982). Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. Journal of Experimental Medicine, 155(3), 797-808. https://doi.org/10.1084/jem.155.3.797
Laanto, E., Bamford, J. K., Ravantti, J. J., & Sundberg, L. R. (2015). The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Frontiers in Microbiology, 6, 829. https://doi.org/10.3389/fmicb.2015.00829
Latka, A., Maciejewska, B., Majkowska-Skrobek, G., Briers, Y., & Drulis-Kawa, Z. (2017). Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology, 101(8), 3103-3119. https://doi.org/10.1007/s00253-017-8224-6
Lawrence, M. L., Banes, M. M., Azadi, P., & Reeks, B. Y. (2003). The Edwardsiella ictaluri O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Microbiology, 149(Pt 6), 1409-1421. https://doi.org/10.1099/mic.0.26138-0
Lin, T.-L., Hsieh, P.-F., Huang, Y.-T., Lee, W.-C., Tsai, Y.-T., Su, P.-A., … Wang, J.-T. (2014). Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: Implication in typing and treatment. Journal of Infectious Diseases, 210(11), 1734-1744. https://doi.org/10.1093/infdis/jiu332
Luo, X., Liao, G., Liu, C., Jiang, X., Lin, M., Zhao, C., & Huang, Z. (2018). Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. Journal of Fish Diseases, 41(10), 1477-1484. https://doi.org/10.1111/jfd.12838
Majkowska-Skrobek, G., Latka, A., Berisio, R., Squeglia, F., Maciejewska, B., Briers, Y., & Drulis-Kawa, Z. (2018). Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Frontiers in Microbiology, 9, 2517. https://doi.org/10.3389/fmicb.2018.02517
Maniatis, T., Sambrook, J., Fritsch, E. F., & Cold Spring Harbor Laboratory (1982). Molecular cloning: a laboratory manual. In T. Maniatis, E. F. Fritsch, & J. Sambrook (Eds.), Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Mushtaq, N., Redpath, M. B., Luzio, J. P., & Taylor, P. W. (2004). Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrobial Agents and Chemotherapy, 48(5), 1503-1508. https://doi.org/10.1128/aac.48.5.1503-1508.2004
Mushtaq, N., Redpath, M. B., Luzio, J. P., & Taylor, P. W. (2005). Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. Journal of Antimicrobial Chemotherapy, 56(1), 160-165. https://doi.org/10.1093/jac/dki177
Nakai, T., Sugimoto, R., Park, K. H., Matsuoka, S., Mori, K., Nishioka, T., & Maruyama, K. (1999). Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Diseases of Aquatic Organisms, 37(1), 33-41. https://doi.org/10.3354/dao037033
Oliveira, H., Mendes, A., Fraga, A. G., Ferreira, A., Pimenta, A. I., Mil-Homens, D., … Azeredo, J. (2019). K2 capsule depolymerase is highly stable, is refractory to resistance, and protects larvae and mice from Acinetobacter baumannii sepsis. Applied and Environment Microbiology, 85(17), 1-12. https://doi.org/10.1128/AEM.00934-19
Preston, A., Mandrell, R. E., Gibson, B. W., & Apicella, M. A. (1996). The lipooligosaccharides of pathogenic gram-negative bacteria. Critical Reviews in Microbiology, 22(3), 139-180. https://doi.org/10.3109/10408419609106458
Pyle, S. W., & Schill, W. B. (1985). Rapid serological analysis of bacterial lipopolysaccharides by electrotransfer to nitrocellulose. Journal of Immunological Methods, 85(2), 371-382. https://doi.org/10.1016/0022-1759(85)90146-2
Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: A review of the technology. Bacteriophage, 4(4), e975540. https://doi.org/10.4161/21597081.2014.975540
Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
Schill, W. B., Phelps, S. R., & Pyle, S. W. (1984). Multilocus electrophoretic assessment of the genetic structure and diversity of Yersinia ruckeri. Applied and Environment Microbiology, 48(5), 975-979.
Smith, H. W., & Huggins, M. B. (1982). Successful treatment of experimental Escherichia coli infections in mice using phage: Its general superiority over antibiotics. Journal of General Microbiology, 128(2), 307-318. https://doi.org/10.1099/00221287-128-2-307
Smith, H. W., & Huggins, M. B. (1983). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Journal of General Microbiology, 129(8), 2659-2675. https://doi.org/10.1099/00221287-129-8-2659
Smith, H. W., Huggins, M. B., & Shaw, K. M. (1987a). The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Journal of General Microbiology, 133(5), 1111-1126. https://doi.org/10.1099/00221287-133-5-1111
Smith, H. W., Huggins, M. B., & Shaw, K. M. (1987b). Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. Journal of General Microbiology, 133(5), 1127-1135. https://doi.org/10.1099/00221287-133-5-1127
Stenholm, A. R., Dalsgaard, I., & Middelboe, M. (2008). Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Applied and Environment Microbiology, 74(13), 4070-4078. https://doi.org/10.1128/AEM.00428-08
Summers, W. C. (2001). Bacteriophage therapy. Annual Review of Microbiology, 55, 437-451. https://doi.org/10.1146/annurev.micro.55.1.437
Torres-Barcelo, C. (2018). Phage therapy faces evolutionary challenges. Viruses, 10(6), https://doi.org/10.3390/v10060323
Welch, T. J., & Crosa, J. H. (2005). Novel role of the lipopolysaccharide O1 side chain in ferric siderophore transport and virulence of Vibrio anguillarum. Infection and Immunity, 73(9), 5864-5872. https://doi.org/10.1128/IAI.73.9.5864-5872.2005
Welch, T. J., & LaPatra, S. (2016). Yersinia ruckeri lipopolysaccharide is necessary and sufficient for eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish & Shellfish Immunology, 49, 420-426. https://doi.org/10.1016/j.fsi.2015.12.037
Welch, T. J., & Wiens, G. D. (2005). Construction of a virulent, green fluorescent protein-tagged Yersinia ruckeri and detection in trout tissues after intraperitoneal and immersion challenge. Diseases of Aquatic Organisms, 67(3), 267-272. https://doi.org/10.3354/dao067267
Wheeler, R. W., Davies, R. L., Dalsgaard, I., Garcia, J., Welch, T. J., Wagley, S., … Verner-Jeffreys, D. W. (2009). Yersinia ruckeri biotype 2 isolates from mainland Europe and the UK likely represent different clonal groups. Diseases of Aquatic Organisms, 84(1), 25-33. https://doi.org/10.3354/dao02039