Cell-Type- and Endocannabinoid-Specific Synapse Connectivity in the Adult Nucleus Accumbens Core.
Action Potentials
Animals
Basolateral Nuclear Complex
/ physiology
Endocannabinoids
/ physiology
Excitatory Postsynaptic Potentials
Hippocampus
/ physiology
Male
Mice, Inbred C57BL
Neural Pathways
/ physiology
Neurons
/ physiology
Nucleus Accumbens
/ metabolism
Optogenetics
Prefrontal Cortex
/ physiology
Receptor, Cannabinoid, CB1
/ physiology
Receptors, Dopamine D1
/ metabolism
Receptors, Dopamine D2
/ metabolism
Synapses
/ physiology
TRPV Cation Channels
/ physiology
CB1R
TRPV1R
accumbens
endogenous cannabinoids
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
29 01 2020
29 01 2020
Historique:
received:
14
05
2019
revised:
04
12
2019
accepted:
05
12
2019
pubmed:
14
12
2019
medline:
10
7
2020
entrez:
14
12
2019
Statut:
ppublish
Résumé
The nucleus accumbens (NAc) is a mesocorticolimbic structure that integrates cognitive, emotional and motor functions. Although its role in psychiatric disorders is widely acknowledged, the understanding of its circuitry is not complete. Here, we combined optogenetic and whole-cell recordings to draw a functional portrait of excitatory disambiguated synapses onto D1 and D2 medium spiny neurons (MSNs) in the adult male mouse NAc core. Comparing synaptic properties of ventral hippocampus (vHipp), basolateral amygdala (BLA) and prefrontal cortex (PFC) inputs revealed a hierarchy of synaptic inputs that depends on the identity of the postsynaptic target MSN. Thus, the BLA is the dominant excitatory pathway onto D1 MSNs (BLA > PFC = vHipp) while PFC inputs dominate D2 MSNs (PFC > vHipp > BLA). We also tested the hypothesis that endocannabinoids endow excitatory circuits with pathway- and cell-specific plasticity. Thus, whereas CB1 receptors (CB1R) uniformly depress excitatory pathways regardless of MSNs identity, TRPV1 receptors (TRPV1R) bidirectionally control inputs onto the NAc core in a pathway-specific manner. Finally, we show that the interplay of TRPV1R/CB1R shapes plasticity at BLA-NAc synapses. Together these data shed new light on synapse and circuit specificity in the adult NAc core and illustrate how endocannabinoids contribute to pathway-specific synaptic plasticity.
Identifiants
pubmed: 31831522
pii: JNEUROSCI.1100-19.2019
doi: 10.1523/JNEUROSCI.1100-19.2019
pmc: PMC6989009
doi:
Substances chimiques
DRD2 protein, mouse
0
Endocannabinoids
0
Receptor, Cannabinoid, CB1
0
Receptors, Dopamine D1
0
Receptors, Dopamine D2
0
TRPV Cation Channels
0
TRPV1 protein, mouse
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1028-1041Subventions
Organisme : NIDA NIH HHS
ID : R01 DA043982
Pays : United States
Informations de copyright
Copyright © 2020 the authors.
Références
Cell Rep. 2016 Aug 2;16(5):1237-1242
pubmed: 27452462
Annu Rev Psychol. 2015 Jan 3;66:25-52
pubmed: 25251489
Neuropsychopharmacology. 2010 Jan;35(1):27-47
pubmed: 19675534
Nature. 2007 Feb 8;445(7128):643-7
pubmed: 17287809
Hippocampus. 1996;6(5):495-512
pubmed: 8953303
Neuroscience. 2003;119(1):19-31
pubmed: 12763065
Neuron. 2008 Mar 13;57(5):746-59
pubmed: 18341994
Neuropharmacology. 2017 Sep 15;124:13-24
pubmed: 28625718
PLoS One. 2013 Jul 02;8(7):e67219
pubmed: 23843993
Cereb Cortex. 2017 Dec 1;27(12):5592-5602
pubmed: 27797833
Brain Res. 2013 Jan 15;1490:128-33
pubmed: 23111346
Science. 2010 Jun 25;328(5986):1709-12
pubmed: 20576893
Neuropsychopharmacology. 2009 Feb;34(3):593-606
pubmed: 18580871
J Neurophysiol. 1994 Mar;71(3):1174-89
pubmed: 8201411
J Neurosci. 2008 Jul 2;28(27):6950-9
pubmed: 18596169
Cell Mol Neurobiol. 2003 Oct;23(4-5):727-38
pubmed: 14514027
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8384-8
pubmed: 12060781
Neuron. 2011 Jul 14;71(1):9-34
pubmed: 21745635
J Neurophysiol. 2009 Apr;101(4):1823-35
pubmed: 19193767
PLoS One. 2013;8(3):e57054
pubmed: 23469183
Neuropharmacology. 2012 Jun;62(8):2463-71
pubmed: 22410393
Nature. 2011 Mar 17;471(7338):358-62
pubmed: 21389985
Front Syst Neurosci. 2011 Jun 08;5:32
pubmed: 21713123
Ann N Y Acad Sci. 1999 Jun 29;877:49-63
pubmed: 10415642
J Neurophysiol. 2009 May;101(5):2516-27
pubmed: 19244354
Cell Rep. 2017 Nov 7;21(6):1426-1433
pubmed: 29117549
Neuroscience. 1992 Oct;50(4):751-67
pubmed: 1448200
Cell Rep. 2015 Jan 6;10(1):75-87
pubmed: 25543142
Prog Neurobiol. 2010 Apr;90(4):385-417
pubmed: 19941931
Neurosci Biobehav Rev. 2000 Jan;24(1):137-41
pubmed: 10654670
Biol Psychiatry. 2015 Feb 1;77(3):212-222
pubmed: 25173629
Neuroscience. 1991;42(1):1-18
pubmed: 1830641
J Physiol. 1998 Aug 1;510 ( Pt 3):881-902
pubmed: 9660900
Neuroscience. 1999;89(4):1169-81
pubmed: 10362305
Nat Neurosci. 2016 May;19(5):725-733
pubmed: 27019014
Elife. 2018 Sep 11;7:
pubmed: 30201092
Front Cell Neurosci. 2015 Mar 26;9:100
pubmed: 25859182
Nat Neurosci. 2010 Dec;13(12):1519-25
pubmed: 21076424
J Neurophysiol. 2018 Oct 1;120(4):1712-1727
pubmed: 29975170
Neuroreport. 1997 Apr 14;8(6):1495-8
pubmed: 9172161
Behav Neurosci. 2001 Aug;115(4):812-25
pubmed: 11508720
Nat Neurosci. 2002 May;5(5):446-51
pubmed: 11976704
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12942-6
pubmed: 7809151
J Neurosci. 2004 Jan 28;24(4):773-80
pubmed: 14749421
J Neurosci. 2001 Jan 1;21(1):109-16
pubmed: 11150326
J Neurosci. 2007 May 16;27(20):5506-14
pubmed: 17507572
J Neurosci. 2008 May 28;28(22):5671-85
pubmed: 18509028
J Neurosci. 1997 May 1;17(9):3334-42
pubmed: 9096166
Ann N Y Acad Sci. 2003 Apr;985:233-50
pubmed: 12724162
J Neurosci. 2017 Jul 19;37(29):6851-6868
pubmed: 28630250
Neuron. 2008 Aug 28;59(4):648-61
pubmed: 18760700
Mol Cell Neurosci. 2009 Jan;40(1):89-97
pubmed: 18930149
Eur J Neurosci. 2015 Sep;42(5):2224-33
pubmed: 26121594
J Neurosci. 2014 Jan 22;34(4):1138-47
pubmed: 24453307
ASN Neuro. 2012 Mar 08;4(2):null
pubmed: 22273000
Front Neuroanat. 2018 Oct 16;12:84
pubmed: 30459564
BMC Neurosci. 2005 May 28;6:37
pubmed: 15921529
Cell Rep. 2018 Jan 23;22(4):905-918
pubmed: 29386133
Neuroscience. 2007 Jun 8;146(4):1484-94
pubmed: 17449185
PLoS One. 2007 Aug 08;2(8):e709
pubmed: 17684555
J Neurosci. 2000 Dec 15;20(24):8987-95
pubmed: 11124974
J Comp Neurol. 2002 Apr 29;446(2):151-65
pubmed: 11932933
Nature. 2016 Feb 11;530(7589):219-22
pubmed: 26840481
J Neurophysiol. 2000 Nov;84(5):2204-16
pubmed: 11067966
Neuron. 2016 Apr 20;90(2):348-361
pubmed: 27041499
Nat Med. 2019 Feb;25(2):337-349
pubmed: 30643290
Neuron. 2012 Nov 21;76(4):790-803
pubmed: 23177963
Eur J Neurosci. 2010 Nov;32(10):1735-43
pubmed: 21044174
Dev Neurosci. 1998;20(2-3):125-45
pubmed: 9691188
J Neurosci. 1997 Mar 1;17(5):1880-90
pubmed: 9030646
J Neurosci. 2008 Oct 22;28(43):10814-24
pubmed: 18945889
Front Behav Neurosci. 2013 Oct 23;7:135
pubmed: 24167476
ACS Chem Neurosci. 2018 Sep 19;9(9):2233-2240
pubmed: 29486555
Nat Rev Neurosci. 2014 Nov;15(11):732-44
pubmed: 25269553
Trends Neurosci. 2008 Nov;31(11):552-8
pubmed: 18786735
Front Neuroanat. 2011 Jul 18;5:41
pubmed: 21811439
Nat Neurosci. 2011 Mar;14(3):345-50
pubmed: 21278728
Stereotact Funct Neurosurg. 2015 Feb 18;93(2):75-93
pubmed: 25720819
Neuroscience. 2008 Jul 17;154(4):1440-9
pubmed: 18554817
J Neurosci. 2019 Oct 30;39(44):8717-8729
pubmed: 31591155
Neuron. 2014 Sep 17;83(6):1453-67
pubmed: 25199705
Front Behav Neurosci. 2013 Dec 06;7:190
pubmed: 24367307
Cereb Cortex. 2017 Apr 1;27(4):2571-2579
pubmed: 26946127
Nat Commun. 2012;3:1080
pubmed: 23011134
J Neurosci. 1999 Dec 15;19(24):11061-71
pubmed: 10594086
Cell. 2019 Mar 7;176(6):1393-1406.e16
pubmed: 30773318