Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
07 01 2020
Historique:
pubmed: 25 12 2019
medline: 12 5 2020
entrez: 25 12 2019
Statut: ppublish

Résumé

INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term "facilitated autoinhibition," whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.

Identifiants

pubmed: 31871199
pii: 1914072117
doi: 10.1073/pnas.1914072117
pmc: PMC6955303
doi:

Substances chimiques

Actins 0
Adaptor Proteins, Signal Transducing 0
CAP1 protein, human 0
CAP2 protein, human 0
Cell Cycle Proteins 0
Cytoskeletal Proteins 0
Formins 0
INF2 protein, human 0
Membrane Proteins 0
acetylated actin 0
Glutamine 0RH81L854J
Lysine K3Z4F929H6

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

439-447

Subventions

Organisme : NIGMS NIH HHS
ID : P20 GM113132
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA023108
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM122545
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM069818
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK088826
Pays : United States

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

J Cell Biol. 2003 Jun 9;161(5):875-87
pubmed: 12796476
J Cell Sci. 2014 Dec 1;127(Pt 23):5052-65
pubmed: 25315833
J Biol Chem. 2009 Apr 17;284(16):10923-34
pubmed: 19201756
J Biol Chem. 2015 Sep 11;290(37):22494-506
pubmed: 26124273
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2595-601
pubmed: 25941386
Proc Natl Acad Sci U S A. 1964 May;51:786-94
pubmed: 14172992
J Biol Chem. 2007 Sep 21;282(38):27721-7
pubmed: 17656358
Annu Rev Biochem. 1986;55:987-1035
pubmed: 3527055
Mol Biol Cell. 2011 Dec;22(24):4822-33
pubmed: 21998196
Front Physiol. 2015 Apr 28;6:116
pubmed: 25972811
Haematologica. 2017 Jun;102(6):984-994
pubmed: 28255013
J Biol Chem. 2013 Sep 13;288(37):26847-55
pubmed: 23921379
J Biol Chem. 2006 Sep 8;281(36):26754-67
pubmed: 16818491
J Biol Chem. 1971 Aug 10;246(15):4866-71
pubmed: 4254541
Curr Opin Cell Biol. 2013 Feb;25(1):30-8
pubmed: 23195437
Cell. 2006 Jan 27;124(2):423-35
pubmed: 16439214
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20
pubmed: 25514926
EMBO J. 2015 Jan 13;34(2):184-99
pubmed: 25425577
J Cell Biol. 2018 Jan 2;217(1):251-268
pubmed: 29142021
Sci Rep. 2016 Mar 04;6:22685
pubmed: 26940749
Elife. 2015 Nov 26;4:e11553
pubmed: 26609810
Elife. 2016 Dec 06;5:
pubmed: 27919320
J Biol Chem. 2014 Oct 31;289(44):30732-42
pubmed: 25228691
J Cell Sci. 2013 Aug 1;126(Pt 15):3249-58
pubmed: 23908377
Curr Biol. 2018 May 7;28(9):R538-R541
pubmed: 29738722
Nat Commun. 2018 May 14;9(1):1892
pubmed: 29760438
Nat Commun. 2019 Nov 22;10(1):5320
pubmed: 31757941
Trends Biochem Sci. 2005 Jun;30(6):342-53
pubmed: 15950879
Nat Rev Mol Cell Biol. 2019 Mar;20(3):156-174
pubmed: 30467427
Mol Cell. 2009 May 15;34(3):311-21
pubmed: 19450529
Curr Biol. 2003 Aug 5;13(15):1335-40
pubmed: 12906795
Mol Biol Cell. 2004 Nov;15(11):5158-71
pubmed: 15356265
Methods Enzymol. 2006;406:190-214
pubmed: 16472659
Trends Biochem Sci. 2016 Jun;41(6):478-490
pubmed: 27068179
Mol Biol Cell. 2013 Jan;24(1):31-41
pubmed: 23135996
J Cell Sci. 2019 Sep 23;132(18):
pubmed: 31413070
J Muscle Res Cell Motil. 1983 Apr;4(2):253-62
pubmed: 6863518
Mol Biol Cell. 2016 Oct 15;27(20):3109-3121
pubmed: 27559132
J Cell Sci. 2009 May 1;122(Pt 9):1430-40
pubmed: 19366733
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4168-77
pubmed: 26153420
Cytoskeleton (Hoboken). 2010 Feb;67(2):120-33
pubmed: 20169536
Dev Cell. 2016 Jan 25;36(2):201-14
pubmed: 26812019
Nature. 2003 Jan 16;421(6920):230
pubmed: 12529632
Curr Biol. 2014 Jan 20;24(2):156-64
pubmed: 24412206
Annu Rev Biochem. 2007;76:593-627
pubmed: 17373907
Cell Motil Cytoskeleton. 2008 Nov;65(11):904-22
pubmed: 18720401
Mol Cell. 2007 Jul 20;27(2):197-213
pubmed: 17643370
Nature. 2017 Jun 1;546(7656):162-167
pubmed: 28538724
J Biol Chem. 2013 Jan 11;288(2):984-94
pubmed: 23184938
Anal Biochem. 1992 May 1;202(2):293-8
pubmed: 1519755
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2933-8
pubmed: 21278336
Nat Cell Biol. 2019 May;21(5):592-602
pubmed: 30962575
Biochemistry. 2003 Jan 21;42(2):486-96
pubmed: 12525176
J Cell Sci. 2002 Apr 15;115(Pt 8):1591-601
pubmed: 11950878

Auteurs

Mu A (M)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Tak Shun Fung (TS)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Lisa M Francomacaro (LM)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Thao Huynh (T)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Tommi Kotila (T)

HiLIFE Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland.

Zdenek Svindrych (Z)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.

Henry N Higgs (HN)

Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; henry.higgs@dartmouth.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH