Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis.
RNA binding proteins
RRID: AB_10561756
RRID: AB_10715072
RRID: AB_11213150
RRID: AB_11213776
RRID: AB_1141557
RRID: AB_2103889
RRID: AB_2242334
RRID: AB_2298772
RRID: AB_2338047
RRID: AB_2338068
RRID: AB_2338820
RRID: AB_2340850
RRID: AB_253210
RRID: AB_2535777
RRID: AB_2535778
RRID: AB_2535781
RRID: AB_260800
RRID: AB_2687963
RRID: AB_2814662
RRID: AB_621848
RRID:SCR_003070
RRID:SCR_007358
experimental autoimmune encephalomyelitis (EAE)
heterogenous nuclear ribonucleoprotein A1 (hnRNP A1)
inducible nitric oxide synthase (iNOS)
multiple sclerosis (MS)
neurodegeneration
stress granules
Journal
The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
07
11
2019
revised:
17
12
2019
accepted:
18
12
2019
pubmed:
25
12
2019
medline:
3
11
2021
entrez:
25
12
2019
Statut:
ppublish
Résumé
Neurodegeneration, including loss of neurons and axons, is a feature of progressive forms of multiple sclerosis (MS). The mechanisms underlying neurodegeneration are mostly unknown. Research implicates autoimmunity to nonmyelin self-antigens as important contributors to disease pathogenesis. Data from our lab implicate autoimmunity to the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a possible mechanism of neurodegeneration in MS. MS patients make antibodies to hnRNP A1, which have been shown to lead to neuronal dysfunction in vitro. Using an animal model of MS, experimental autoimmune encephalomyelitis (EAE), we show here that injection of anti-hnRNP A1 antibodies, in contrast to control antibodies, resulted in worsened disease and increased neurodegeneration. We found a reduction of NeuN
Substances chimiques
Autoantibodies
0
Autoantigens
0
Heterogeneous Nuclear Ribonucleoprotein A1
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1704-1724Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Aktas, O., Smorodchenko, A., Brocke, S., Infante-Duarte, C., Topphoff, U. S., Vogt, J., … Pohl, E. (2005). Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron, 46(3), 421-432.
Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology-Cell Physiology, 271(5), C1424-C1437.
Bentmann, E., Neumann, M., Tahirovic, S., Rodde, R., Dormann, D., & Haass, C. (2012). Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). Journal of Biological Chemistry, 287(27), 23079-23094.
Berretta, S., Perciavalle, V., & Poppele, R. E. (1991). Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum. Journal of Comparative Neurology, 305(2), 273-281.
Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy, 74, 101-110.
Brosnan, C. F., Lee, S. C., & Liu, J. (1997). Regulation of inducible nitric oxide synthase expression in human glia: Implications for inflammatory central nervous system diseases. Biochemical Society transactions, 25(2), 679-683.
Bruhns, P. (2012). Properties of mouse and human IgG receptors and their contribution to disease models. Blood, 119(24), 5640-5649.
Bukreeva, I., Campi, G., Fratini, M., Spanò, R., Bucci, D., Battaglia, G., … Venturi, C. (2017). Quantitative 3D investigation of neuronal network in mouse spinal cord model. Scientific Reports, 7, 41054.
Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., & Stella, A. M. G. (2007). Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews Neuroscience, 8(10), 766-775.
Catapano, L. A., Magavi, S. S., & Macklis, J. D. (2008). Neuroanatomical tracing of neuronal projections with Fluoro-Gold. In Neural stem cells (pp. 353-359). Humana Press, Totowa, NJ.
Collin, L., Bohrmann, B., Göpfert, U., Oroszlan-Szovik, K., Ozmen, L., & Grüninger, F. (2014). Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease. Brain, 137(10), 2834-2846.
Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262(5134), 689-695.
Dawson, V. L. (1995). Nitric oxide: Role in neurotoxicity. Clinical and Experimental Pharmacology and Physiology, 22(4), 305-308.
Derfuss, T., Linington, C., Hohlfeld, R., & Meinl, E. (2010). Axo-glial antigens as targets in multiple sclerosis: Implications for axonal and grey matter injury. Journal of Molecular Medicine, 88(8), 753-761.
Dileepan, T., Smith, E. D., Knowland, D., Hsu, M., Platt, M., Bittner-Eddy, P., … Harley, E. (2016). Group a Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. The Journal of Clinical Investigation, 126(1), 303-317.
Douglas, J., Gardner, L. A., & Levin, M. C. (2013). Antibodies to an intracellular antigen penetrate neuronal cells and cause deleterious effects. Journal of Clinical & Cellular Immunology, 4(1), 134.
Douglas, J. N., Gardner, L. A., Salapa, H. E., Lalor, S. J., Lee, S., Segal, B. M., … Levin, M. C. (2016). Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease. Journal of Neuroinflammation, 13(1), 178-178. https://doi.org/10.1186/s12974-016-0647-y
Douglas, J. N., Gardner, L. A., Salapa, H. E., & Levin, M. C. (2016b). Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 colocalize to stress granules resulting in altered RNA and protein levels in a model of neurodegeneration in multiple sclerosis. Journal of Clinical & Cellular Immunology, 7(2), 402.
Fenyk-Melody, J. E., Garrison, A. E., Brunnert, S. R., Weidner, J. R., Shen, F., Shelton, B. A., & Mudgett, J. S. (1998). Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. The Journal of Immunology, 160(6), 2940-2946.
Ferguson, B., Matyszak, M. K., Esiri, M. M., & Perry, V. H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain: A Journal of Neurology, 120(3), 393-399.
Friese, M. A., Schattling, B., & Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nature Reviews Neurology, 10(4), 225-238.
Fuller, J. P., Stavenhagen, J. B., & Teeling, J. L. (2014). New roles for fc receptors in neurodegeneration-the impact on immunotherapy for Alzheimer's disease. Frontiers in Neuroscience, 8, 235.
Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., & Ahmadiani, A. (2017). Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neuroscience & Therapeutics, 23(1), 5-22.
Gonsette, R. E. (2008). Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. Journal of the Neurological Sciences, 274(1-2), 48-53.
Greenlee, J. E., Clawson, S. A., Hill, K. E., Wood, B., Clardy, S. L., Tsunoda, I., … Carlson, N. G. (2014). Neuronal uptake of anti-Hu antibody, but not anti-Ri antibody, leads to cell death in brain slice cultures. Journal of Neuroinflammation, 11(1), 160.
Heneka, M. T., & Feinstein, D. L. (2001). Expression and function of inducible nitric oxide synthase in neurons. Journal of Neuroimmunology, 114(1-2), 8-18.
Hogarth, P. M. (2002). Fc receptors are major mediators of antibody based inflammation in autoimmunity. Current Opinion in Immunology, 14(6), 798-802.
Huizinga, R., Heijmans, N., Schubert, P., Gschmeissner, S., t Hart, B. A., Herrmann, H., & Amor, S. (2007). Immunization with neurofilament light protein induces spastic paresis and axonal degeneration in Biozzi ABH mice. Journal of Neuropathology & Experimental Neurology, 66(4), 295-304.
Islam, M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological Research, 39(1), 73-82.
Kahl, K. G., Schmidt, H. H. H. W., Jung, S., Sherman, P., Toyka, K. V., & Zielasek, J. (2004). Experimental autoimmune encephalomyelitis in mice with a targeted deletion of the inducible nitric oxide synthase gene: Increased T-helper 1 response. Neuroscience Letters, 358(1), 58-62.
Kim, H. J., Kim, N. C., Wang, Y.-D., Scarborough, E. A., Moore, J., Diaz, Z., … Molliex, A. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495(7442), 467-473.
Lassmann, H., & van Horssen, J. (2011). The molecular basis of neurodegeneration in multiple sclerosis. FEBS Letters, 585(23), 3715-3723.
Lee, S., Salapa, H. E., & Levin, M. C. (2019). Localization of near-infrared labeled antibodies to the central nervous system in experimental autoimmune encephalomyelitis. PLoS One, 14(2), e0212357.
Lee, S., Xu, L., Shin, Y., Gardner, L., Hartzes, A., Dohan, F. C., … Levin, M. C. (2011). A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. Journal of Neuroimmunology, 235(1-2), 56-69.
Levin, M. C., Douglas, J. N., Meyers, L., Lee, S., Shin, Y., & Gardner, L. A. (2014). Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degenerative Neurological and Neuromuscular Disease, 4, 49-63.
Levin, M. C., Lee, S., Gardner, L. A., Shin, Y., Douglas, J. N., & Cooper, C. (2013). Autoantibodies to non-myelin antigens as contributors to the pathogenesis of multiple sclerosis. Journal of Clinical & Cellular Immunology, 4, 1000148.
Levin, M. C., Lee, S., Gardner, L. A., Shin, Y., Douglas, J. N., & Groover, C. J. (2012). Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degenerative Neurological and Neuromuscular Disease, 2, 175.
Levin, M. C., Lee, S., Gardner, L. A., Shin, Y., Douglas, J. N., & Salapa, H. (2017). Autoantibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNPA1) cause altered ‘ribostasis’ and neurodegeneration; the legacy of HAM/TSP as a model of progressive multiple sclerosis. Journal of Neuroimmunology, 304, 56-62.
Lipton, S. A., Singel, D. J., & Stamler, J. S. (1994). Nitric oxide in the central nervous system. In Progress in brain research (Vol. 103, pp. 359-364). Elsevier, Amsterdam Netherlands.
Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.-J., Vanderwyde, T., Citro, A., Mehta, T., … Sherman, M. (2010). Tar DNA binding protein-43 (TDP-43) associates with stress granules: Analysis of cultured cells and pathological brain tissue. PLoS One, 5(10), e13250.
Lowenstein, C. J. (1992). Nitric oxide, a novel biologic messenger. Cell, 70, 705-707.
Matsushita, M. (1999). Projections from the upper lumbar cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. Journal of Comparative Neurology, 412(4), 633-648.
Matsushita, M., & Hosoya, Y. (1979). Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Research, 173(2), 185-200.
Mendez, I., & Hong, M. (1997). Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: A tracer study using fluorogold and horseradish peroxidase. Brain Research, 778(1), 194-205.
Merchenthaler, I. (1991). Neurons with access to the general circulation in the central nervous system of the rat: A retrograde tracing study with Fluoro-Gold. Neuroscience, 44(3), 655-662.
Meyer, R., Weissert, R., Diem, R., Storch, M. K., de Graaf, K. L., Kramer, B., & Bähr, M. (2001). Acute neuronal apoptosis in a rat model of multiple sclerosis. Journal of Neuroscience, 21(16), 6214-6220.
Parkinson, J. F., Mitrovic, B., & Merrill, J. E. (1997). The role of nitric oxide in multiple sclerosis. Journal of Molecular Medicine, 75(3), 174-186.
Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., Moran, J., Liang, T. Y., … Mazur, C. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 14(4), 459-468.
Pyka-Fosciak, G., Stasiolek, M., & Litwin, J. A. (2018). Immunohistochemical analysis of spinal cord components in mouse model of experimental autoimmune encephalomyelitis. Folia Histochemica et Cytobiologica, 56(3), 151-158.
Ramaswami, M., Taylor, J. P., & Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. Cell, 154(4), 727-736.
Salapa, H., Lee, S., Shin, Y., & Levin, M. (2017). Contribution of the degeneration of the neuro-axonal unit to the pathogenesis of multiple sclerosis. Brain Sciences, 7(6), 69.
Salapa, H. E., Johnson, C., Hutchinson, C., Popescu, B. F., & Levin, M. C. (2018). Dysfunctional RNA binding proteins and stress granules in multiple sclerosis. Journal of Neuroimmunology, 324, 149-156.
Salapa, H. E., Libner, C. D., & Levin, M. C. (2019). Dysfunctional RNA binding protein biology and neurodegeneration in experimental autoimmune encephalomyelitis in female mice. Journal of Neuroscience Research In Press, https://doi.org/10.1002/jnr.24554
Saleem, S., Anwar, A., Fayyaz, M., Anwer, F., & Anwar, F. (2019). An overview of therapeutic options in relapsing-remitting multiple sclerosis. Cureus, 11(7), e5246.
Sasaki, S., Shibata, N., Komori, T., & Iwata, M. (2000). iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis. Neuroscience Letters, 291(1), 44-48.
Schmued, L. C., & Fallon, J. H. (1986). Fluoro-Gold: A new fluorescent retrograde axonal tracer with numerous unique properties. Brain Research, 377(1), 147-154.
Shrestha, S. S., Bannatyne, B. A., Jankowska, E., Hammar, I., Nilsson, E., & Maxwell, D. J. (2012). Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord. The Journal of Physiology, 590(7), 1737-1755.
Snyder, R. L., Faull, R. L. M., & Mehler, W. R. (1978). A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 181(4), 833-852.
Sonar, S. A., & Lal, G. (2019). The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis. Frontiers in Immunology, 10, 710.
Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., … Buratti, E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319(5870), 1668-1672.
Takai, T. (2002). Roles of Fc receptors in autoimmunity. Nature Reviews Immunology, 2(8), 580-592.
Vodovotz, Y., Lucia, M. S., Flanders, K. C., Chesler, L., Xie, Q.-W., Smith, T. W., … Nathan, C. (1996). Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. Journal of Experimental Medicine, 184(4), 1425-1433.
Vogt, J., Paul, F., Aktas, O., Müller-Wielsch, K., Dörr, J., Dörr, S., … Steinbusch, H. (2009). Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 66(3), 310-322.
Xiong, H., Zhu, C., Li, F., Hegazi, R., He, K., Babyatsky, M., … Plevy, S. E. (2004). Inhibition of interleukin-12 p40 transcription and NF-κB activation by nitric oxide in murine macrophages and dendritic cells. Journal of Biological Chemistry, 279(11), 10776-10783.
Xue, Q., Yan, Y., Zhang, R., & Xiong, H. (2018). Regulation of iNOS on immune cells and its role in diseases. International Journal of Molecular Sciences, 19(12), 3805.
Yang, J., Zhang, R., Lu, G., Shen, Y., Peng, L., Zhu, C., … Tang, M. (2013). T cell-derived inducible nitric oxide synthase switches off TH17 cell differentiation. Journal of Experimental Medicine, 210(7), 1447-1462.
Yune, T. Y., Chang, M. J., Kim, S. J., Lee, Y. B., Shin, S. W., Rhim, H., … Han, C. T. (2003). Increased production of tumor necrosis factor-α induces apoptosis after traumatic spinal cord injury in rats. Journal of Neurotrauma, 20(2), 207-219.