The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials.


Journal

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
ISSN: 1878-7479
Titre abrégé: Neurotherapeutics
Pays: United States
ID NLM: 101290381

Informations de publication

Date de publication:
01 2020
Historique:
pubmed: 28 12 2019
medline: 5 2 2021
entrez: 28 12 2019
Statut: ppublish

Résumé

As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.

Identifiants

pubmed: 31879850
doi: 10.1007/s13311-019-00825-1
pii: 10.1007/s13311-019-00825-1
pmc: PMC7007477
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

142-152

Références

Bushby K, Connor E. Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clin. Investig. 2011;1:1217–1235.
doi: 10.4155/cli.11.113
Hoffman EP, Brown Jr. RH, Kunkel LM. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell. 1987;51:919–928.
doi: 10.1016/0092-8674(87)90579-4 pubmed: 3319190 pmcid: 3319190
Mah JK, Korngut L, Fiest KM, et al. A Systematic Review and Meta-analysis on the Epidemiology of the Muscular Dystrophies. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2016;43:163–177.
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17:251–267.
doi: 10.1016/S1474-4422(18)30024-3 pubmed: 29395989 pmcid: 29395989
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17:347–361.
doi: 10.1016/S1474-4422(18)30025-5 pubmed: 5889091 pmcid: 5889091
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17:445–455.
doi: 10.1016/S1474-4422(18)30026-7 pubmed: 5902408 pmcid: 5902408
Duchenne G-B. Physiologie des mouvements démontrée à l’aide de l’experimentation électrique et de l’observation clinique: et applicable à l’étude des paralysies et des déformations. Baillière; 1867.
Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66:1121–1131.
doi: 10.1016/0092-8674(91)90035-W
Sacco A, Mourkioti F, Tran R, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010;143:1059–1071.
doi: 10.1016/j.cell.2010.11.039 pubmed: 3025608 pmcid: 3025608
Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 2007;578:327–336.
doi: 10.1113/jphysiol.2006.118265
Lee T, Takeshima Y, Kusunoki N, et al. Differences in carrier frequency between mothers of Duchenne and Becker muscular dystrophy patients. J. Hum. Genet. 2014;59:46–50.
doi: 10.1038/jhg.2013.119
McNally EM, Kaltman JR, Benson DW, et al. Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation. 2015;131:1590–1598.
doi: 10.1161/CIRCULATIONAHA.114.015151 pubmed: 4573596 pmcid: 4573596
Melacini P, Vianello A, Villanova C, et al. Cardiac and respiratory involvement in advanced stage Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 1996;6:367–376.
doi: 10.1016/0960-8966(96)00357-4
Fayssoil A, Ogna A, Chaffaut C, et al. Natural history of cardiac function in Duchenne and Becker muscular dystrophies on home mechanical ventilation. Medicine (Baltimore). 2018;97:e11381.
doi: 10.1097/MD.0000000000011381
Okubo M, Minami N, Goto K, et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J. Hum. Genet. 2016;61:483–489.
doi: 10.1038/jhg.2016.7 pubmed: 4931045 pmcid: 4931045
Fenichel GM, Florence JM, Pestronk A, et al. Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology. 1991;41:1874–1877.
doi: 10.1212/WNL.41.12.1874
Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N. Engl. J. Med. 1989;320:1592–1597.
doi: 10.1056/NEJM198906153202405
Lebel DE, Corston JA, McAdam LC, et al. Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. J. Bone Joint Surg. Am. 2013;95:1057–1061.
doi: 10.2106/JBJS.L.01577
Kinnett K, Noritz G. The PJ Nicholoff Steroid Protocol for Duchenne and Becker Muscular Dystrophy and Adrenal Suppression. PLoS Curr. 2017;9.
Eagle M, Baudouin SV, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. NMD. 2002;12:926–929.
doi: 10.1016/S0960-8966(02)00140-2
McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Lond. Engl. 2017;390:1489–1498.
doi: 10.1016/S0140-6736(17)31611-2
Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–487.
doi: 10.1002/mus.24332
Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 2016;79:257–271.
doi: 10.1002/ana.24555 pubmed: 5064753 pmcid: 5064753
Syed YY. Eteplirsen: First Global Approval. Drugs. 2016;76:1699–1704.
doi: 10.1007/s40265-016-0657-1
Goemans NM, Tulinius M, van den Hauwe M, et al. Long-Term Efficacy, Safety, and Pharmacokinetics of Drisapersen in Duchenne Muscular Dystrophy: Results from an Open-Label Extension Study. PLoS ONE [Internet]. 2016;11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010191/ .
Ricotti V, Spinty S, Roper H, et al. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS ONE [Internet]. 2016;11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824384/ .
Mazzone E, Vasco G, Sormani MP, et al. Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology. 2011;77:250–256.
doi: 10.1212/WNL.0b013e318225ab2e pubmed: 21734183 pmcid: 21734183
Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat. Med. 2012;31:2973–2984.
doi: 10.1002/sim.5403 pubmed: 3551627 pmcid: 3551627
US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry and FDA Staff: Qualification Process for Drug Development Tools. 2014.
Katz R. Biomarkers and Surrogate Markers: An FDA Perspective. NeuroRx. 2004;1:189–195.
doi: 10.1602/neurorx.1.2.189 pubmed: 534924 pmcid: 534924
Hamuro L, Chan P, Tirucherai G, et al. Developing a Natural History Progression Model for Duchenne Muscular Dystrophy Using the Six-Minute Walk Test. CPT Pharmacomet. Syst. Pharmacol. 2017;6:596–603.
doi: 10.1002/psp4.12220
Bohannon RW, Bubela D, Magasi S, et al. Comparison of walking performance over the first 2 minutes and the full 6 minutes of the Six-Minute Walk Test. BMC Res. Notes. 2014;7:269.
doi: 10.1186/1756-0500-7-269 pubmed: 4012174 pmcid: 4012174
Goemans N, Vanden Hauwe M, Signorovitch J, et al. Individualized Prediction of Changes in 6-Minute Walk Distance for Patients with Duchenne Muscular Dystrophy. PloS One. 2016;11:e0164684.
doi: 10.1371/journal.pone.0164684 pubmed: 5063281 pmcid: 5063281
Pane M, Mazzone ES, Sivo S, et al. Long term natural history data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PloS One. 2014;9:e108205.
doi: 10.1371/journal.pone.0108205 pubmed: 4182715 pmcid: 4182715
Chrzanowski SM, Baligand C, Willcocks RJ, et al. Multi-slice MRI reveals heterogeneity in disease distribution along the length of muscle in Duchenne muscular dystrophy. Acta Myol. Myopathies Cardiomyopathies Off. J. Mediterr. Soc. Myol. 2017;36:151–162.
Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol. Med. 2011;3:258–265.
Arpan I, Forbes SC, Lott DJ, et al. T
doi: 10.1002/nbm.2851
Arpan I, Willcocks RJ, Forbes SC, et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology. 2014;83:974–980.
doi: 10.1212/WNL.0000000000000775 pubmed: 4162304 pmcid: 4162304
Carlier PG, Mercuri E, Straub V. Applications of MRI in muscle diseases. Neuromuscul. Disord. NMD. 2012;22 Suppl 2:S41.
doi: 10.1016/j.nmd.2012.08.001
Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed. 2015;28:1150–1162.
doi: 10.1002/nbm.3352
Hogrel J-Y, Wary C, Moraux A, et al. Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy. Neurology. 2016;86:1022–1030.
doi: 10.1212/WNL.0000000000002464 pubmed: 4799716 pmcid: 4799716
Forbes SC, Willcocks RJ, Triplett WT, et al. Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study. PLoS ONE. 2014;9:e106435.
doi: 10.1371/journal.pone.0106435 pubmed: 4159278 pmcid: 4159278
Mathur S, Lott DJ, Senesac C, et al. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with Duchenne muscular dystrophy. Arch. Phys. Med. Rehabil. 2010;91:1051–1058.
doi: 10.1016/j.apmr.2010.03.024 pubmed: 5961721 pmcid: 5961721
Mercuri E, Talim B, Moghadaszadeh B, et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul. Disord. 2002;12:631–638.
doi: 10.1016/S0960-8966(02)00023-8
Burakiewicz J, Sinclair CDJ, Fischer D, et al. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J. Neurol. 2017;264:2053–2067.
doi: 10.1007/s00415-017-8547-3 pubmed: 5617883 pmcid: 5617883
Hooijmans MT, Niks EH, Burakiewicz J, et al. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2017;27:458–464.
doi: 10.1016/j.nmd.2017.02.009
Fischmann A, Hafner P, Gloor M, et al. Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J. Neurol. 2013;260:969–974.
doi: 10.1007/s00415-012-6733-x
Forbes SC, Walter GA, Rooney WD, et al. Skeletal muscles of ambulant children with Duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology. 2013;269:198–207.
doi: 10.1148/radiol.13121948 pubmed: 3781359 pmcid: 3781359
Gaeta M, Messina S, Mileto A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol. 2012;41:955–961.
doi: 10.1007/s00256-011-1301-5
Willcocks RJ, Triplett WT, Forbes SC, et al. Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J. Neurol. 2017;264:64–71.
doi: 10.1007/s00415-016-8311-0
Wokke BH, Bos C, Reijnierse M, et al. Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J. Magn. Reson. Imaging. 2013;38:619–624.
doi: 10.1002/jmri.23998
Wren TAL, Bluml S, Tseng-Ong L, et al. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am. J. Roentgenol. 2008;190:W8–12.
doi: 10.2214/AJR.07.2732
Hooijmans MT, Doorenweerd N, Baligand C, et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up. PloS One. 2017;12:e0182086.
doi: 10.1371/journal.pone.0182086 pubmed: 5538641 pmcid: 5538641
Davies RC, Eston RG, Fulford J, et al. Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study. J. Appl. Physiol. 2011;111:782–790.
doi: 10.1152/japplphysiol.01021.2010
Lodi R, Muntoni F, Taylor J, et al. Correlative MR imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul. Disord. 1997;7:505–511.
doi: 10.1016/S0960-8966(97)00108-9
Lott DJ, Forbes SC, Mathur S, et al. Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 2014;24:574–582.
doi: 10.1016/j.nmd.2014.03.013 pubmed: 4142654 pmcid: 4142654
Willcocks RJ, Arpan IA, Forbes SC, et al. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: Effects of age and disease progression. Neuromuscul. Disord. 2014;24:393–401.
doi: 10.1016/j.nmd.2013.12.012 pubmed: 4277599 pmcid: 4277599
Kim HK, Laor T, Horn PS, et al. T2 Mapping in Duchenne Muscular Dystrophy: Distribution of Disease Activity and Correlation with Clinical Assessments1. Radiology. 2010;255:899–908.
doi: 10.1148/radiol.10091547
Mankodi A, Azzabou N, Bulea T, et al. Skeletal muscle water T2as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2017;27:705–714.
doi: 10.1016/j.nmd.2017.04.008
Bishop CA, Ricotti V, Sinclair CDJ, et al. Semi-Automated Analysis of Diaphragmatic Motion with Dynamic Magnetic Resonance Imaging in Healthy Controls and Non-Ambulant Subjects with Duchenne Muscular Dystrophy. Front. Neurol. 2018;9:9.
doi: 10.3389/fneur.2018.00009 pubmed: 5790781 pmcid: 5790781
Barnard AM, Willcocks RJ, Finanger EL, et al. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PloS One. 2018;13:e0194283.
doi: 10.1371/journal.pone.0194283 pubmed: 5858773 pmcid: 5858773
Willcocks RJ, Rooney WD, Triplett WT, et al. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Ann. Neurol. 2016;79:535–547.
doi: 10.1002/ana.24599 pubmed: 4955760 pmcid: 4955760
Bonati U, Hafner P, Schädelin S, et al. Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2015;25:679–685.
doi: 10.1016/j.nmd.2015.05.006
Rutkove SB, Darras BT. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study. J. Phys. Conf. Ser. 2013;434.
Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann. Neurol. 2017;81:622–632.
doi: 10.1002/ana.24874 pubmed: 5444980 pmcid: 5444980
Rutkove SB, Geisbush TR, Mijailovic A, et al. Cross-sectional Evaluation of Electrical Impedance Myography and Quantitative Ultrasound for the Assessment of Duchenne Muscular Dystrophy in a Clinical Trial Setting. Pediatr. Neurol. 2014;51:88–92.
doi: 10.1016/j.pediatrneurol.2014.02.015 pubmed: 4063877 pmcid: 4063877
Zaidman CM, Wang LL, Connolly AM, et al. Electrical impedance myography in Duchenne muscular dystrophy and healthy controls: A multicenter study of reliability and validity. Muscle Nerve. 2015;52:592–597.
doi: 10.1002/mus.24611
Rutkove SB, Shefner JM, Gregas M, et al. Characterizing Spinal Muscular Atrophy with Electrical Impedance Myography. Muscle Nerve. 2010;42:915–921.
doi: 10.1002/mus.21784
Kolb SJ, Coffey CS, Yankey JW, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann. Clin. Transl. Neurol. 2016;3:132–145.
doi: 10.1002/acn3.283 pubmed: 4748311 pmcid: 4748311
Rutkove SB, Esper GJ, Lee KS, et al. Electrical impedance myography in the detection of radiculopathy. Muscle Nerve. 2005;32:335–341.
doi: 10.1002/mus.20377 pubmed: 15948202 pmcid: 15948202
Statland JM, Heatwole C, Eichinger K, et al. Electrical impedance myography in facioscapulohumeral muscular dystrophy. Muscle Nerve. 2016;54:696–701.
doi: 10.1002/mus.25065 pubmed: 26840230 pmcid: 26840230
Rutkove SB, Aaron R, Shiffman CA. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve. 2002;25:390–397.
doi: 10.1002/mus.10048
Rutkove SB, Caress JB, Cartwright MS, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph. Lateral Scler. 2012;13:439–445.
doi: 10.3109/17482968.2012.688837 pubmed: 3422377 pmcid: 3422377
Rutkove SB, Zhang H, Schoenfeld DA, et al. Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials. Clin. Neurophysiol. 2007;118:2413–2418.
doi: 10.1016/j.clinph.2007.08.004 pubmed: 2080665 pmcid: 2080665
Shefner JM, Rutkove SB, Caress JB, et al. Reducing sample size requirements for future ALS clinical trials with a dedicated electrical impedance myography system. Amyotroph. Lateral Scler. Front. Degener. 2018;1–7.
Rodriguez S, Ollmar S, Waqar M, et al. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications. IEEE Trans. Biomed. Circuits Syst. 2016;10:533–544.
doi: 10.1109/TBCAS.2015.2456242
Pillen S, Arts IMP, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–693.
doi: 10.1002/mus.21015
Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet Lond. Engl. 1980;1:1389–1390.
doi: 10.1016/S0140-6736(80)92656-2
Zaidman CM, Connolly AM, Malkus EC, et al. Quantitative ultrasound using backscatter analysis in Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. NMD. 2010;20:805–809.
doi: 10.1016/j.nmd.2010.06.019
Zaidman CM, Malkus EC, Connolly AM. Muscle ultrasound quantifies disease progression over time in infants and young boys with duchenne muscular dystrophy. Muscle Nerve. 2015;52:334–338.
doi: 10.1002/mus.24609 pubmed: 5931214 pmcid: 5931214
Jansen M, van Alfen N, Nijhuis van der Sanden MWG, et al. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2012;22:306–317.
pubmed: 22133654
Baumer TG, Davis L, Dischler J, et al. Shear wave elastography of the supraspinatus muscle and tendon: Repeatability and preliminary findings. J. Biomech. 2017;53:201–204.
doi: 10.1016/j.jbiomech.2017.01.008
Food and Drug Administration C for DE and. Development & Approval Process (Drugs) - Drug Development Tools: Fit-for-Purpose Initiative [Internet]. [cited 2019 Mar 3]. Available from: https://www.fda.gov/drugs/developmentapprovalprocess/ucm505485.htm .

Auteurs

Stephen M Chrzanowski (SM)

Department of Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA. stephen.chrzanowski@childrens.harvard.edu.

Basil T Darras (BT)

Department of Neurology, Boston Children's Hospital, Boston, MA, USA.

Seward B Rutkove (SB)

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH