Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies.

direct and indirect rank-based inverse normal transformation nonnormality omnibus test quantitative traits transformation type I error rate

Journal

Biometrics
ISSN: 1541-0420
Titre abrégé: Biometrics
Pays: United States
ID NLM: 0370625

Informations de publication

Date de publication:
12 2020
Historique:
received: 17 06 2019
revised: 21 10 2019
accepted: 16 12 2019
pubmed: 29 12 2019
medline: 26 10 2021
entrez: 29 12 2019
Statut: ppublish

Résumé

Quantitative traits analyzed in Genome-Wide Association Studies (GWAS) are often nonnormally distributed. For such traits, association tests based on standard linear regression are subject to reduced power and inflated type I error in finite samples. Applying the rank-based inverse normal transformation (INT) to nonnormally distributed traits has become common practice in GWAS. However, the different variations on INT-based association testing have not been formally defined, and guidance is lacking on when to use which approach. In this paper, we formally define and systematically compare the direct (D-INT) and indirect (I-INT) INT-based association tests. We discuss their assumptions, underlying generative models, and connections. We demonstrate that the relative powers of D-INT and I-INT depend on the underlying data generating process. Since neither approach is uniformly most powerful, we combine them into an adaptive omnibus test (O-INT). O-INT is robust to model misspecification, protects the type I error, and is well powered against a wide range of nonnormally distributed traits. Extensive simulations were conducted to examine the finite sample operating characteristics of these tests. Our results demonstrate that, for nonnormally distributed traits, INT-based tests outperform the standard untransformed association test, both in terms of power and type I error rate control. We apply the proposed methods to GWAS of spirometry traits in the UK Biobank. O-INT has been implemented in the R package RNOmni, which is available on CRAN.

Identifiants

pubmed: 31883270
doi: 10.1111/biom.13214
pmc: PMC8643141
mid: NIHMS1756823
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1262-1272

Subventions

Organisme : NCI NIH HHS
ID : R35 CA197449
Pays : United States
Organisme : NIH HHS
ID : F31 HL140822
Pays : United States
Organisme : NCI NIH HHS
ID : U19 CA203654
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL113338
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL135818
Pays : United States
Organisme : NHLBI NIH HHS
ID : F31 HL140822
Pays : United States
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : NIH HHS
ID : R35 HL135818
Pays : United States
Organisme : NIH HHS
ID : R35 CA197449
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_12028
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : P01 CA134294
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : U01 HG009088
Pays : United States

Informations de copyright

© 2019 The International Biometric Society.

Références

Nat Genet. 2015 Mar;47(3):284-90
pubmed: 25642633
PLoS Genet. 2007 Jul;3(7):e115
pubmed: 17658951
Am J Hum Genet. 2016 Apr 7;98(4):653-66
pubmed: 27018471
Nat Genet. 2015 Mar;47(3):291-5
pubmed: 25642630
Behav Genet. 2009 Sep;39(5):580-95
pubmed: 19526352
Nat Genet. 2010 Jan;42(1):36-44
pubmed: 20010834
J Am Stat Assoc. 2020;115(529):393-402
pubmed: 33012899
Am J Respir Crit Care Med. 2016 Oct 1;194(7):886-897
pubmed: 26977737
Am J Hum Genet. 2019 Mar 7;104(3):410-421
pubmed: 30849328
Nat Genet. 2012 Jan 29;44(3):269-76
pubmed: 22286219
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
PLoS Med. 2015 Mar 31;12(3):e1001779
pubmed: 25826379
PLoS One. 2010 Mar 22;5(3):e9763
pubmed: 20339536
Genet Epidemiol. 2019 Apr;43(3):263-275
pubmed: 30653739
Nature. 2008 Mar 27;452(7186):423-8
pubmed: 18344981
Am J Hum Genet. 2019 Feb 7;104(2):260-274
pubmed: 30639324
Nature. 2017 Oct 11;550(7675):204-213
pubmed: 29022597
Nat Genet. 2010 Apr;42(4):348-54
pubmed: 20208533

Auteurs

Zachary R McCaw (ZR)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Jacqueline M Lane (JM)

Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.

Richa Saxena (R)

Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.

Susan Redline (S)

Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts.

Xihong Lin (X)

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Department of Statistics, Harvard University, Cambridge, Massachusetts.

Articles similaires

Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Humans Metabolic Syndrome Sleep Apnea, Obstructive Mendelian Randomization Analysis Gastrointestinal Diseases

A computational model for bacteriophage ϕX174 gene expression.

Alexis M Hill, Tanvi A Ingle, Claus O Wilke
1.00
Gene Expression Regulation, Viral Promoter Regions, Genetic Bacteriophage phi X 174 Computer Simulation Models, Genetic

Classifications MeSH