Modeling motor task activation from resting-state fMRI using machine learning in individual subjects.

Functional MRI General linear model Independent component analysis Machine learning Motor function Resting state

Journal

Brain imaging and behavior
ISSN: 1931-7565
Titre abrégé: Brain Imaging Behav
Pays: United States
ID NLM: 101300405

Informations de publication

Date de publication:
Feb 2021
Historique:
pubmed: 7 1 2020
medline: 28 4 2021
entrez: 7 1 2020
Statut: ppublish

Résumé

Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.

Identifiants

pubmed: 31903530
doi: 10.1007/s11682-019-00239-9
pii: 10.1007/s11682-019-00239-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

122-132

Subventions

Organisme : National Natural Science Foundation of China
ID : No.81871331
Organisme : the Key Research and Development Program of Shaanxi Province
ID : 2018SF-113

Références

Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Suppl 1), S148.
doi: 10.1016/S1053-8119(09)71511-3
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.
doi: 10.1002/mrm.1910340409
Bizzi, A., Blasi, V., Falini, A., Ferroli, P., Cadioli, M., Danesi, U., et al. (2008). Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology, 248(2), 579–589.
doi: 10.1148/radiol.2482071214
Blatow, M., Reinhardt, J., Riffel, K., Nennig, E., Wengenroth, M., & Stippich, C. (2011). Clinical functional MRI of sensorimotor cortex using passive motor and sensory stimulation at 3 tesla. Journal of Magnetic Resonance Imaging, 34(2), 429–437.
doi: 10.1002/jmri.22629
Branco, P., Seixas, D., Deprez, S., Kovacs, S., Peeters, R., Castro, S. L., & Sunaert, S. (2016). Resting-state functional magnetic resonance imaging for language preoperative planning. Frontiers in Human Neuroscience, 10, 11.
doi: 10.3389/fnhum.2016.00011
Cohen, A. D., Chen, Z., Parker Jones, O., Niu, C., & Wang, Y. (2019). Regression-based machine-learning approaches to predict task activation using resting-state fMRI. Human Brain Mapping. https://doi.org/10.1002/hbm.24841 .
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.
doi: 10.1016/j.neuron.2014.05.014
Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853.
doi: 10.1073/pnas.0601417103
DeAngelis, L. M. (2001). Brain tumors. New England Journal of Medicine, 344(2), 114–123.
doi: 10.1056/NEJM200101113440207
Duffau, H. (2005). Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. The Lancet Neurology, 4(8), 476–486.
doi: 10.1016/S1474-4422(05)70140-X
Field, A. S., Yen, Y.-F., Burdette, J. H., & Elster, A. D. (2000). False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. American Journal of Neuroradiology, 21(8), 1388–1396.
pubmed: 11003269
Giussani, C., Roux, F.-E., Ojemann, J., Sganzerla, E. P., Pirillo, D., & Papagno, C. (2010). Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery, 66(1), 113–120.
doi: 10.1227/01.NEU.0000360392.15450.C9
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127 .
doi: 10.1016/j.neuroimage.2013.04.127 pubmed: 23668970 pmcid: 3720813
Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., Krägeloh-Mann, I., & Cioni, G. (2007). Brain representation of active and passive hand movements in children. Pediatric Research, 61, 485–490. https://doi.org/10.1203/pdr.0b013e3180332c2e .
doi: 10.1203/pdr.0b013e3180332c2e pubmed: 17515876
Johnstone, T., Ores Walsh, K. S., Greischar, L. L., Alexander, A. L., Fox, A. S., Davidson, R. J., & Oakes, T. R. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27(10), 779–788.
doi: 10.1002/hbm.20219
Jones, O. P., Voets, N., Adcock, J., Stacey, R., & Jbabdi, S. (2017). Resting connectivity predicts task activation in pre-surgical populations. NeuroImage: Clinical, 13, 378–385.
doi: 10.1016/j.nicl.2016.12.028
Kelly Jr., R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., et al. (2010). Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189(2), 233–245.
doi: 10.1016/j.jneumeth.2010.03.028
Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao, F. (2016). How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean–Chinese–English trilinguals. Neuroimage, 129, 25–39.
doi: 10.1016/j.neuroimage.2015.11.068
Kocak, M., Ulmer, J. L., Sahin Ugurel, M., Gaggl, W., & Prost, R. W. (2009). Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging—initial results. Radiology, 251(2), 485–492.
doi: 10.1148/radiol.2512080231
Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872.
doi: 10.3174/ajnr.A3263
Liljeström, M., Stevenson, C., Kujala, J., & Salmelin, R. (2015). Task-and stimulus-related cortical networks in language production: exploring similarity of MEG-and fMRI-derived functional connectivity. NeuroImage, 120, 75–87.
doi: 10.1016/j.neuroimage.2015.07.017
McNeill, K. A. (2016). Epidemiology of brain tumors. Neurologic Clinics, 34(4), 981–998.
doi: 10.1016/j.ncl.2016.06.014
Mitchell, T. J., Hacker, C. D., Breshears, J. D., Szrama, N. P., Sharma, M., Bundy, D. T., et al. (2013). A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery, 73(6), 969–983.
doi: 10.1227/NEU.0000000000000141
Niu, C., Zhang, M., Min, Z., Rana, N., Zhang, Q., Liu, X., Li, M., & Lin, P. (2014). Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study. PLoS One, 9(5), e96850.
doi: 10.1371/journal.pone.0096850
Niu, C., Liu, X., Yang, Y., Zhang, K., Min, Z., Wang, M., et al. (2016). Assessing region of interest schemes for the corticospinal tract in patients with brain tumors. Medicine, 95(12).
Qiu, T.-M., Yan, C.-G., Tang, W.-J., Wu, J.-S., Zhuang, D.-X., Yao, C.-J., et al. (2014). Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochirurgica, 156(12), 2295–2302.
doi: 10.1007/s00701-014-2236-0
Roland, J. L., Griffin, N., Hacker, C. D., Vellimana, A. K., Akbari, S. H., Shimony, J. S., Smyth, M. D., Leuthardt, E. C., & Limbrick, D. D. (2017). Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience. Journal of Neurosurgery: Pediatrics, 20(6), 583–590.
pubmed: 28960172
Rosazza, C., & Minati, L. (2011). Resting-state brain networks: literature review and clinical applications. Neurological Sciences, 32(5), 773–785.
doi: 10.1007/s10072-011-0636-y
Rosazza, C., Minati, L., Ghielmetti, F., Mandelli, M., & Bruzzone, M. (2012). Functional connectivity during resting-state functional MR imaging: study of the correspondence between independent component analysis and region-of-interest− based methods. American Journal of Neuroradiology, 33(1), 180–187.
doi: 10.3174/ajnr.A2733
Rosazza, C., Aquino, D., D’Incerti, L., Cordella, R., Andronache, A., Zacà, D., et al. (2014). Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI. PLoS One, 9(6), e98860.
doi: 10.1371/journal.pone.0098860
Roux, F.-E., Boulanouar, K., Lotterie, J.-A., Mejdoubi, M., LeSage, J. P., & Berry, I. (2003). Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery, 52(6), 1335–1347.
doi: 10.1227/01.NEU.0000064803.05077.40
Sanai, N., & Berger, M. S. (2018). Surgical oncology for gliomas: the state of the art. Nature Reviews Clinical Oncology, 15(2), 112–125.
doi: 10.1038/nrclinonc.2017.171
Seitz, R. J., Roland, P. E., Bohm, C., Greitz, T., & Stone-Elander, S. (1991). Somatosensory discrimination of shape: tactile exploration and cerebral activation. European Journal of Neuroscience, 3(6), 481–492.
doi: 10.1111/j.1460-9568.1991.tb00835.x
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051
Tavor, I., Jones, O. P., Mars, R., Smith, S., Behrens, T., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220.
doi: 10.1126/science.aad8127
Tharin, S., & Golby, A. (2007). Functional brain mapping and its applications to neurosurgery. Operative Neurosurgery, 60(suppl_4) ONS-185-ONS-202.
Tombari, D., Loubinoux, I., Pariente, J., Gerdelat, A., Albucher, J.-F., Tardy, J., Cassol, E., & Chollet, F. (2004). A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage, 23(3), 827–839.
doi: 10.1016/j.neuroimage.2004.07.058
Tyndall, A. J., Reinhardt, J., Tronnier, V., Mariani, L., & Stippich, C. (2017). Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. European Radiology, 27(1), 267–278.
doi: 10.1007/s00330-016-4369-4
Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2006). Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabilitation and Neural Repair, 20(3), 398–405.
doi: 10.1177/1545968306286322
Weiller, C., Jüptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., et al. (1996). Brain representation of active and passive movements. NeuroImage, 4(2), 105–110.
doi: 10.1006/nimg.1996.0034
Xu, Y., Tong, Y., Liu, S., Chow, H. M., AbdulSabur, N. Y., Mattay, G. S., & Braun, A. R. (2014). Denoising the speaking brain: Toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. NeuroImage, 103, 33–47.
doi: 10.1016/j.neuroimage.2014.09.013
Yuan, K., Qin, W., Dong, M., Liu, J., Sun, J., Liu, P., et al. (2010). Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neuroscience Letters, 482(2), 101–105.
doi: 10.1016/j.neulet.2010.07.005
Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Operative Neurosurgery, 65(suppl_6), ons226–ons236.
doi: 10.1227/01.NEU.0000350868.95634.CA
Zuo, X.-N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., & Milham, M. P. (2010). Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage, 49(3), 2163–2177.
doi: 10.1016/j.neuroimage.2009.10.080

Auteurs

Chen Niu (C)

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
Institute for Biomedical Engineering, Technical University of Munich, Munich, Germany.

Alexander D Cohen (AD)

Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.

Xin Wen (X)

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.

Ziyi Chen (Z)

Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.

Pan Lin (P)

Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China.

Xin Liu (X)

Institute for Biomedical Engineering, Technical University of Munich, Munich, Germany.

Bjoern H Menze (BH)

Institute for Biomedical Engineering, Technical University of Munich, Munich, Germany.
Department of Computer Science, Technical University of Munich, Munich, Germany.

Benedikt Wiestler (B)

Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany.

Yang Wang (Y)

Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. yangwang@mcw.edu.

Ming Zhang (M)

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China. zhangming01@mail.xjtu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH