ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response.
Acetylation
Animals
Breast Neoplasms
/ drug therapy
Cell Cycle Proteins
/ genetics
Cell Proliferation
Clustered Regularly Interspaced Short Palindromic Repeats
DNA-Binding Proteins
/ genetics
Drug Resistance, Neoplasm
/ genetics
Estrogen Receptor alpha
/ genetics
Female
Gene Expression Regulation, Neoplastic
Hepatocyte Nuclear Factor 3-alpha
/ genetics
Histone Deacetylase 1
/ genetics
Humans
MCF-7 Cells
Mice, Inbred NOD
Transcription Factors
/ genetics
Xenograft Model Antitumor Assays
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
01
02
2019
accepted:
01
11
2019
pubmed:
9
1
2020
medline:
14
4
2020
entrez:
9
1
2020
Statut:
ppublish
Résumé
Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.
Identifiants
pubmed: 31913353
doi: 10.1038/s41588-019-0541-5
pii: 10.1038/s41588-019-0541-5
pmc: PMC7116647
mid: EMS84795
doi:
Substances chimiques
ARID1A protein, human
0
BRD4 protein, human
0
Cell Cycle Proteins
0
DNA-Binding Proteins
0
ESR1 protein, human
0
Estrogen Receptor alpha
0
FOXA1 protein, human
0
Hepatocyte Nuclear Factor 3-alpha
0
Transcription Factors
0
HDAC1 protein, human
EC 3.5.1.98
Histone Deacetylase 1
EC 3.5.1.98
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
187-197Subventions
Organisme : Cancer Research UK
ID : A20411
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Références
Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2, 101–112 (2002).
pubmed: 12635173
doi: 10.1038/nrc721
Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).
pubmed: 16009131
doi: 10.1016/j.cell.2005.05.008
Eeckhoute, J. et al. Positive cross-regulatory loop ties GATA-3 to Estrogen Receptor alpha expression in breast cancer. Cancer Res. 67, 6477–6483 (2007).
pubmed: 17616709
doi: 10.1158/0008-5472.CAN-07-0746
Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009).
pubmed: 19701242
doi: 10.1038/nrc2713
Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).
pubmed: 11136970
doi: 10.1016/S0092-8674(00)00188-4
Malovannaya, A. et al. Analysis of the human endogenous coregulator complexome. Cell 145, 787–799 (2011).
pubmed: 21620140
pmcid: 3131083
doi: 10.1016/j.cell.2011.05.006
Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).
pubmed: 23403292
pmcid: 7116645
doi: 10.1016/j.celrep.2013.01.010
Fletcher, T. M. et al. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. Biol. 22, 3255–3263 (2002).
pubmed: 11971959
pmcid: 133787
doi: 10.1128/MCB.22.10.3255-3263.2002
John, S. et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell 29, 611–624 (2008).
pubmed: 18342607
doi: 10.1016/j.molcel.2008.02.010
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).
pubmed: 30397315
pmcid: 6698386
doi: 10.1038/s41556-018-0221-1
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).
pubmed: 30343899
pmcid: 6791824
doi: 10.1016/j.cell.2018.09.032
Belandia, B., Orford, R. L., Hurst, H. C. & Parker, M. G. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J. 21, 4094–4103 (2002).
pubmed: 12145209
pmcid: 126156
doi: 10.1093/emboj/cdf412
Garcia-Pedrero, J. M., Kiskinis, E., Parker, M. G. & Belandia, B. The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J. Biol. Chem. 281, 22656–22664 (2006).
pubmed: 16769725
doi: 10.1074/jbc.M602561200
Jeong, K. W., Lee, Y. H. & Stallcup, M. R. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J. Biol. Chem. 284, 29298–29309 (2009).
pubmed: 19720835
pmcid: 2785560
doi: 10.1074/jbc.M109.037010
DiRenzo, J. et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell. Biol. 20, 7541–7549 (2000).
pubmed: 11003650
pmcid: 86306
doi: 10.1128/MCB.20.20.7541-7549.2000
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204
pmcid: 4640607
doi: 10.1126/sciadv.1500447
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
pubmed: 23644491
pmcid: 3667980
doi: 10.1038/ng.2628
Wei, Z. et al. Vitamin D switches BAF complexes to protect beta cells. Cell 173, 1135–1149 (2018).
pubmed: 29754817
pmcid: 5987229
doi: 10.1016/j.cell.2018.04.013
Cho, H. D. et al. Loss of tumor suppressor ARID1A protein expression correlates with poor prognosis in patients with primary breast cancer. J. Breast Cancer 18, 339–346 (2015).
pubmed: 26770240
pmcid: 4705085
doi: 10.4048/jbc.2015.18.4.339
Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).
pubmed: 28810143
pmcid: 5559645
doi: 10.1016/j.ccell.2017.07.005
St Pierre, R. & Kadoch, C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr. Opin. Genet. Dev. 42, 56–67 (2017).
doi: 10.1016/j.gde.2017.02.004
Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).
pubmed: 27161491
pmcid: 4866047
doi: 10.1038/ncomms11479
Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016).
pubmed: 27760321
pmcid: 5081405
doi: 10.1016/j.celrep.2016.09.079
Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).
pubmed: 24905006
doi: 10.1016/j.molcel.2014.05.016
Nagarajan, S. et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 8, 460–469 (2014).
pubmed: 25017071
pmcid: 4747248
doi: 10.1016/j.celrep.2014.06.016
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925
pmcid: 3440846
doi: 10.1038/nature10983
Glont, S. E. et al. Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha. PLoS ONE 14, e0215340 (2019).
pubmed: 30970003
pmcid: 6457525
doi: 10.1371/journal.pone.0215340
Papachristou, E. K. et al. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat. Commun. 9, 2311 (2018).
pubmed: 29899353
pmcid: 5998130
doi: 10.1038/s41467-018-04619-5
Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016). e22.
pubmed: 27641504
pmcid: 5037319
doi: 10.1016/j.cell.2016.08.041
Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).
pubmed: 22464331
pmcid: 3326523
doi: 10.1016/j.cell.2012.02.013
Johnson, T. A., Elbi, C., Parekh, B. S., Hager, G. L. & John, S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol. Biol. Cell 19, 3308–3322 (2008).
pubmed: 18508913
pmcid: 2488306
doi: 10.1091/mbc.e08-02-0123
Augello, M. A., Hickey, T. E. & Knudsen, K. E. FOXA1: master of steroid receptor function in cancer. EMBO J. 30, 3885–3894 (2011).
pubmed: 21934649
pmcid: 3209791
doi: 10.1038/emboj.2011.340
Jozwik, K. M., Chernukhin, I., Serandour, A. A., Nagarajan, S. & Carroll, J. S. FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep. 17, 2715–2723 (2016).
pubmed: 27926873
pmcid: 5177601
doi: 10.1016/j.celrep.2016.11.028
Cirillo, L. A. & Zaret, K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999).
pubmed: 10635321
doi: 10.1016/S1097-2765(00)80225-7
Cirillo, L. A. & Zaret, K. S. Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J. Mol. Biol. 366, 720–724 (2007).
pubmed: 17189638
doi: 10.1016/j.jmb.2006.11.087
Berns, K. et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 37, 4611–4625 (2018).
pubmed: 29760405
pmcid: 6095834
doi: 10.1038/s41388-018-0300-6
Caumanns, J. J., Wisman, G. B. A., Berns, K., van der Zee, A. G. J. & de Jong, S. ARID1A mutant ovarian clear cell carcinoma: a clear target for synthetic lethal strategies. Biochim. Biophys. Acta Rev. Cancer 1870, 176–184 (2018).
pubmed: 30025943
doi: 10.1016/j.bbcan.2018.07.005
Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250
pmcid: 187518
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090
pmcid: 5623106
doi: 10.1038/nmeth.4396
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158
pmcid: 2703892
doi: 10.1093/nar/gkp335
Stark, R. & Brown, G. D. DiffBind: differential binding analysis of ChIP-Seq peak data v.3.10 (Bioconductor); http://bioconductor.org/packages/release/bioc/html/DiffBind.html
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Mohammed, H. et al. Progesterone receptor modulates ERalpha action in breast cancer. Nature 523, 313–317 (2015).
pubmed: 26153859
pmcid: 4650274
doi: 10.1038/nature14583
Centenera, M. M., Raj, G. V., Knudsen, K. E., Tilley, W. D. & Butler, L. M. Ex vivo culture of human prostate tissue and drug development. Nat. Rev. Urol. 10, 483–487 (2013).
pubmed: 23752995
doi: 10.1038/nrurol.2013.126
Centenera, M. M. et al. A patient-derived explant (PDE) model of hormone-dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).
pubmed: 30117261
pmcid: 6120230
doi: 10.1002/1878-0261.12354
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 44, e108 (2016).
pubmed: 27060149
pmcid: 4914105
doi: 10.1093/nar/gkw227