ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
02 2020
Historique:
received: 01 02 2019
accepted: 01 11 2019
pubmed: 9 1 2020
medline: 14 4 2020
entrez: 9 1 2020
Statut: ppublish

Résumé

Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.

Identifiants

pubmed: 31913353
doi: 10.1038/s41588-019-0541-5
pii: 10.1038/s41588-019-0541-5
pmc: PMC7116647
mid: EMS84795
doi:

Substances chimiques

ARID1A protein, human 0
BRD4 protein, human 0
Cell Cycle Proteins 0
DNA-Binding Proteins 0
ESR1 protein, human 0
Estrogen Receptor alpha 0
FOXA1 protein, human 0
Hepatocyte Nuclear Factor 3-alpha 0
Transcription Factors 0
HDAC1 protein, human EC 3.5.1.98
Histone Deacetylase 1 EC 3.5.1.98

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

187-197

Subventions

Organisme : Cancer Research UK
ID : A20411
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn
Type : ErratumIn

Références

Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2, 101–112 (2002).
pubmed: 12635173 doi: 10.1038/nrc721
Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).
pubmed: 16009131 doi: 10.1016/j.cell.2005.05.008
Eeckhoute, J. et al. Positive cross-regulatory loop ties GATA-3 to Estrogen Receptor alpha expression in breast cancer. Cancer Res. 67, 6477–6483 (2007).
pubmed: 17616709 doi: 10.1158/0008-5472.CAN-07-0746
Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009).
pubmed: 19701242 doi: 10.1038/nrc2713
Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).
pubmed: 11136970 doi: 10.1016/S0092-8674(00)00188-4
Malovannaya, A. et al. Analysis of the human endogenous coregulator complexome. Cell 145, 787–799 (2011).
pubmed: 21620140 pmcid: 3131083 doi: 10.1016/j.cell.2011.05.006
Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).
pubmed: 23403292 pmcid: 7116645 doi: 10.1016/j.celrep.2013.01.010
Fletcher, T. M. et al. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. Biol. 22, 3255–3263 (2002).
pubmed: 11971959 pmcid: 133787 doi: 10.1128/MCB.22.10.3255-3263.2002
John, S. et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell 29, 611–624 (2008).
pubmed: 18342607 doi: 10.1016/j.molcel.2008.02.010
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).
pubmed: 30397315 pmcid: 6698386 doi: 10.1038/s41556-018-0221-1
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 (2018).
pubmed: 30343899 pmcid: 6791824 doi: 10.1016/j.cell.2018.09.032
Belandia, B., Orford, R. L., Hurst, H. C. & Parker, M. G. Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J. 21, 4094–4103 (2002).
pubmed: 12145209 pmcid: 126156 doi: 10.1093/emboj/cdf412
Garcia-Pedrero, J. M., Kiskinis, E., Parker, M. G. & Belandia, B. The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. J. Biol. Chem. 281, 22656–22664 (2006).
pubmed: 16769725 doi: 10.1074/jbc.M602561200
Jeong, K. W., Lee, Y. H. & Stallcup, M. R. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J. Biol. Chem. 284, 29298–29309 (2009).
pubmed: 19720835 pmcid: 2785560 doi: 10.1074/jbc.M109.037010
DiRenzo, J. et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell. Biol. 20, 7541–7549 (2000).
pubmed: 11003650 pmcid: 86306 doi: 10.1128/MCB.20.20.7541-7549.2000
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204 pmcid: 4640607 doi: 10.1126/sciadv.1500447
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
pubmed: 23644491 pmcid: 3667980 doi: 10.1038/ng.2628
Wei, Z. et al. Vitamin D switches BAF complexes to protect beta cells. Cell 173, 1135–1149 (2018).
pubmed: 29754817 pmcid: 5987229 doi: 10.1016/j.cell.2018.04.013
Cho, H. D. et al. Loss of tumor suppressor ARID1A protein expression correlates with poor prognosis in patients with primary breast cancer. J. Breast Cancer 18, 339–346 (2015).
pubmed: 26770240 pmcid: 4705085 doi: 10.4048/jbc.2015.18.4.339
Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).
pubmed: 28810143 pmcid: 5559645 doi: 10.1016/j.ccell.2017.07.005
St Pierre, R. & Kadoch, C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr. Opin. Genet. Dev. 42, 56–67 (2017).
doi: 10.1016/j.gde.2017.02.004
Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).
pubmed: 27161491 pmcid: 4866047 doi: 10.1038/ncomms11479
Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016).
pubmed: 27760321 pmcid: 5081405 doi: 10.1016/j.celrep.2016.09.079
Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).
pubmed: 24905006 doi: 10.1016/j.molcel.2014.05.016
Nagarajan, S. et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 8, 460–469 (2014).
pubmed: 25017071 pmcid: 4747248 doi: 10.1016/j.celrep.2014.06.016
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925 pmcid: 3440846 doi: 10.1038/nature10983
Glont, S. E. et al. Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha. PLoS ONE 14, e0215340 (2019).
pubmed: 30970003 pmcid: 6457525 doi: 10.1371/journal.pone.0215340
Papachristou, E. K. et al. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat. Commun. 9, 2311 (2018).
pubmed: 29899353 pmcid: 5998130 doi: 10.1038/s41467-018-04619-5
Bruna, A. et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167, 260–274 (2016). e22.
pubmed: 27641504 pmcid: 5037319 doi: 10.1016/j.cell.2016.08.041
Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).
pubmed: 22464331 pmcid: 3326523 doi: 10.1016/j.cell.2012.02.013
Johnson, T. A., Elbi, C., Parekh, B. S., Hager, G. L. & John, S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol. Biol. Cell 19, 3308–3322 (2008).
pubmed: 18508913 pmcid: 2488306 doi: 10.1091/mbc.e08-02-0123
Augello, M. A., Hickey, T. E. & Knudsen, K. E. FOXA1: master of steroid receptor function in cancer. EMBO J. 30, 3885–3894 (2011).
pubmed: 21934649 pmcid: 3209791 doi: 10.1038/emboj.2011.340
Jozwik, K. M., Chernukhin, I., Serandour, A. A., Nagarajan, S. & Carroll, J. S. FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep. 17, 2715–2723 (2016).
pubmed: 27926873 pmcid: 5177601 doi: 10.1016/j.celrep.2016.11.028
Cirillo, L. A. & Zaret, K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999).
pubmed: 10635321 doi: 10.1016/S1097-2765(00)80225-7
Cirillo, L. A. & Zaret, K. S. Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J. Mol. Biol. 366, 720–724 (2007).
pubmed: 17189638 doi: 10.1016/j.jmb.2006.11.087
Berns, K. et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 37, 4611–4625 (2018).
pubmed: 29760405 pmcid: 6095834 doi: 10.1038/s41388-018-0300-6
Caumanns, J. J., Wisman, G. B. A., Berns, K., van der Zee, A. G. J. & de Jong, S. ARID1A mutant ovarian clear cell carcinoma: a clear target for synthetic lethal strategies. Biochim. Biophys. Acta Rev. Cancer 1870, 176–184 (2018).
pubmed: 30025943 doi: 10.1016/j.bbcan.2018.07.005
Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250 pmcid: 187518
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090 pmcid: 5623106 doi: 10.1038/nmeth.4396
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158 pmcid: 2703892 doi: 10.1093/nar/gkp335
Stark, R. & Brown, G. D. DiffBind: differential binding analysis of ChIP-Seq peak data v.3.10 (Bioconductor); http://bioconductor.org/packages/release/bioc/html/DiffBind.html
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Mohammed, H. et al. Progesterone receptor modulates ERalpha action in breast cancer. Nature 523, 313–317 (2015).
pubmed: 26153859 pmcid: 4650274 doi: 10.1038/nature14583
Centenera, M. M., Raj, G. V., Knudsen, K. E., Tilley, W. D. & Butler, L. M. Ex vivo culture of human prostate tissue and drug development. Nat. Rev. Urol. 10, 483–487 (2013).
pubmed: 23752995 doi: 10.1038/nrurol.2013.126
Centenera, M. M. et al. A patient-derived explant (PDE) model of hormone-dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).
pubmed: 30117261 pmcid: 6120230 doi: 10.1002/1878-0261.12354
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 44, e108 (2016).
pubmed: 27060149 pmcid: 4914105 doi: 10.1093/nar/gkw227

Auteurs

Sankari Nagarajan (S)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Shalini V Rao (SV)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Joseph Sutton (J)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Danya Cheeseman (D)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Shanade Dunn (S)

Wellcome Trust Sanger Institute, Hinxton, UK.

Evangelia K Papachristou (EK)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Jose-Enrique Gonzalez Prada (JG)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Dominique-Laurent Couturier (DL)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Sanjeev Kumar (S)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Kamal Kishore (K)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Chandra Sekhar Reddy Chilamakuri (CSR)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Silvia-Elena Glont (SE)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Emily Archer Goode (E)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Cara Brodie (C)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Naomi Guppy (N)

The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.

Rachael Natrajan (R)

The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.

Alejandra Bruna (A)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Carlos Caldas (C)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Alasdair Russell (A)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Rasmus Siersbæk (R)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Kosuke Yusa (K)

Wellcome Trust Sanger Institute, Hinxton, UK.
Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.

Igor Chernukhin (I)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.

Jason S Carroll (JS)

CRUK Cambridge Institute, University of Cambridge, Cambridge, UK. Jason.carroll@cruk.cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH