Metabolic differentiation and quantification of gymnemic acid in Gymnema sylvestre (Retz.) R.Br. ex Sm. leaf extract and its fermented products.
Biotransformation
Gymnema sylvestre
Gymnemagenin
HPTLC
Probiotic
Journal
Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
24
07
2019
revised:
29
11
2019
accepted:
02
12
2019
pubmed:
17
1
2020
medline:
6
6
2020
entrez:
17
1
2020
Statut:
ppublish
Résumé
Gymnemagenin is the bioactive metabolite found in Gymnema sylvestre leaves and possesses different therapeutic potential. Due to its lower abundance and higher market potential, gymnemagenin was obtained from chemical conversion and bacterial biotransformation. To obtain the probiotic-based fermentative conversion of gymnemic acid-enriched G. sylvestre leaf extract to gymnemagenin-containing nutraceuticals and its metabolites based chromatographic comparison. Gymnema sylvestre leaves were extracted through soxhalation, and the extract was prepared and characterised. Gymnemic acid was fermented, separately, by Lactobacillus casei, Lactobacillus rhamnosus, Bifidobacterium bifidum, and by their mix co-culture. The fermented materials were analysed for their gymnemagenin content, antioxidant potential, antidiabetic potential, and metabolomics analysis. Extraction yielded about 35% w/w of raw plant material, and 8.5% was found to be as total saponin content. Extract at higher concentration (≥ 5%, w/v) significantly altered the growth behaviour of probiotics. High-performance thin-layer chromatography (HPTLC) based quantification of gymnemagenin revealed that a maximum increase of 95.5% gymnemagenin was found in extract incubated with B. bifidum followed by mix co-culture containing (B. bifidum, L. casei, and L. rhamnosus), L. casei, and L. rhamnosus. However, liquid chromatography mass spectrometry (LC-MS) analysis resulted in the identification of a total of 56 metabolites. Chromatographically profiled, and probiotic-based fermented G. sylvestre leaves can be used as a potent nutraceutical for diabetes and other metabolic disorders.
Substances chimiques
Plant Extracts
0
Saponins
0
Triterpenes
0
gymnemic acid
327O38FRK1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
488-500Subventions
Organisme : Indian Council of Medical Research
ID : 45/05/2018-BMS/PHA/OL/ dated 03/04/2018
Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Arun LB, Arunachalam AM, Arunachalam KD, Annamalai SK, Kumar KA. In-vivo anti-ulcer, anti-stress, anti-allergic, and functional properties of gymnemic acid isolated from Gymnema sylvestre R Br. BMC Complement Altern Med. 2014;14(1):1-11. https://doi.org/10.1186/1472-6882-14-70
Saneja A, Sharma C, Aneja KR, Pahwa R. Gymnema sylvestre (Gurmar): A review. Sch Res Libr Der Pharm Lett. 2010;2(1):275-284.
Karthic R, Nagaraj S, Arulmurugan P, Seshadri S, Rengasamy R, Kathiravan K. Gymnema sylvestre R. Br. suspension cell extract show antidiabetic potential in alloxan induced diabetic albino male rats. Asian Pac J Trop Biomed. 2012;2(2 Suppl):S930-S933. https://doi.org/10.1016/S2221-1691(12)60339-6
Parveen S, Ansari M H R, Parveen R, et al. Chromatography based metabolomics and in-silico screening of Gymnema sylvestre leaf extract for its antidiabetic potential. Evidence-Based Complement Altern Med. 2019;2019:14-14. https://doi.org/10.1155/2019/7523159
Chattopadhyay RR. Possible mechanism of antihyperglycemic effect of Gymnema sylvestre leaf extract, part I. Gen Pharmacol. 1998;31(3):495-496. https://doi.org/10.1016/S0306-3623(97)00450-3
Patel K, Gadewar M, Tripathi R. Pharmacological and analytical aspects of gymnemic acid: a concise report. Asian Pacific J Trop Dis. 2012;2(5):414-416. https://doi.org/10.1016/S2222-1808(12)60090-5
Satdive RK, Abhilash P, Fulzele DP. Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia. 2003;74(7-8):699-701. https://doi.org/10.1016/S0367-326X(03)00154-0
Wu X, Mao G, Fan Q, et al. Isolation, purification, immunological and anti-tumor activities of polysaccharides from Gymnema sylvestre. Food Res Int. 2012;48(2):935-939. https://doi.org/10.1016/j.foodres.2012.02.006
Preuss HG, Bagchi D, Bagchi M, Rao CS, Satyanarayana S, Dey DK. Efficacy of a novel, natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX, niacin-bound chromium and Gymnema sylvestre extract in weight management in human volunteers: A pilot study. Nutr Res. 2004;24(1):45-58.
Yadav M, Lavania A, Tomar R, Prasad GBKS, Jain S, Yadav H. Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Appl Biochem Biotechnol. 2010;160(8):2388-2400. https://doi.org/10.1007/s12010-009-8799-1
Ye W, Liu X, Zhang Q, Che CT, Zhao S. Antisweet saponins from Gymnema sylvestre. J Nat Prod. 2001;64(2):232-235. https://doi.org/10.1021/np0004451
Netala VR, Kotakadi VS, Gaddam SA, Ghosh SB, Tartte V. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi. 3 Biotech. 2016;6(2):1-11. https://doi.org/10.1007/s13205-016-0555-y
World Health Organisation. Global Report on Diabetes. WHO: Geneva, 2016. doi:978 92 4 156525 7.
Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A memoir. J Clin Biochem Nutr. 2007;41(2):77-81. https://doi.org/10.3164/jcbn.2007010
Bera R, Kundu A, Sen T, Adhikari D, Karmakar S. In-vitro metabolic stability and permeability of gymnemagenin and its in-vivo pharmacokinetic correlation in rats - a pilot study. Planta Med. 2016;82(6):544-550. https://doi.org/10.1055/s-0042-101032
Jovel J, Dieleman LA, Kao D, Mason AL, Wine E. The human gut microbiome in health and disease. Metagenomics Perspect Methods, Appl. 2017;197-213. https://doi.org/10.1016/B978-0-08-102268-9.00010-0
Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;25(3):289-313. doi:1https://doi.org/10.1016/j.bbi.2017.04.008.
Parthasarathy R, Sathiyabama M. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R. Br Appl Biochem Biotechnol. 2014;172(6):3141-3152. https://doi.org/10.1007/s12010-014-0754-0
Chowdhary F, Rasool MH, Sciences A. Isolation and characterization of gymnemic acid from indigenous Gymnema sylvestre. J Appl Pharm. 2010;3(2):60-65.
Obadoni BO, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and delta states of Nigeria. Global J Pure Appl Sci. 2002;8(2):203-208. https://doi.org/10.4314/gjpas.v8i2.16033
Khan W, Parveen R, Chester K, Parveen S, Ahmad S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in-vivo GC-MS metabolomics. Front Pharmacol. 2017;8(9):1-16. https://doi.org/10.3389/fphar.2017.00577
Sheoran S, Panda BP, Admane PS, Panda AK, Wajid S. Ultrasound-assisted extraction of gymnemic acids from Gymnema sylvestre leaves and its effect on insulin-producing RINm-5F β cell lines. Phytochem Anal. 2015;26(2):97-104. https://doi.org/10.1002/pca.2540
Puratchimani V, Jha S. Standardisation of Gymnema sylvestre R. Br. With reference to gymnemagenin by high-performance thin-layer chromatography. Phytochem Anal. 2004;15(3):164-166. https://doi.org/10.1002/pca.763
Trivedi PD, Pundarikakshudu K. A validated high performance thin-layer chromatographic method for the estimation of gymnemic acids through gymnemagenin in Gymnema sylvestre, materials, extracts and formulations. Int J Appl Sci Eng. 2008;6(1):19-28.
Kumar U, Singh I, Vimala PY. In vitro salt stress induced production of gymnemic acid in callus cultures of Gymnema sylvestre R.Br. Afr J Biotechnol. 2010;9(31):4904-4909. https://doi.org/10.5897/AJB10.223
Werth MT, Halouska S, Shortridge MD, Zhang B, Powers R. Analysis of metabolomic PCA data using tree diagrams. Anal Biochem. 2010;399(1):58-63. https://doi.org/10.1016/j.ab.2009.12.022
Donkor ON, Shah NP. Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J Food Sci. 2007;73(1):M15-M20. https://doi.org/10.1111/j.1750-3841.2007.00547.x
Raimondi S, Roncaglia L, De Lucia MD, et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol. 2009;81(5):943-950. https://doi.org/10.1007/s00253-008-1719-4
Delgado S, Guadamuro L, Flórez AB, Vázquez L, Mayo B. Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. Innov Food Sci Emerg Technol. 2019;51(2017):148-155. https://doi.org/10.1016/j.ifset.2018.03.018
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18(11):1157-1161. https://doi.org/10.1038/81137
Maulidiani M, Sheikh BY, Mediani A, et al. Differentiation of Nigella sativa seeds from four different origins and their bioactivity correlations based on NMR-metabolomics approach. Phytochem Lett. 2015;13:308-318. https://doi.org/10.1016/j.phytol.2015.07.012
Mari A, Lyon D, Fragner L, et al. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics. 2013;9(3):599-607. https://doi.org/10.1007/s11306-012-0473-x