Specific enrichment of phosphopeptides by using magnetic nanocomposites of type Fe
Animals
Caseins
/ blood
Cattle
Graphite
/ chemistry
Humans
Magnetite Nanoparticles
/ chemistry
Nanocomposites
/ chemistry
Oligopeptides
/ chemistry
Peptide Fragments
/ blood
Phosphopeptides
/ blood
Proteolysis
Serum Albumin, Bovine
/ chemistry
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Trypsin
/ chemistry
Enrichment
Nanocomposite
Oligopeptide
Phosphopeptide
Self-assembly
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
22 01 2020
22 01 2020
Historique:
received:
19
08
2019
accepted:
26
12
2019
entrez:
24
1
2020
pubmed:
24
1
2020
medline:
29
10
2020
Statut:
epublish
Résumé
Iron(III-immobilized magnetic nano-composites (MNCs) were first fabricated using one-step aqueous self-assembly of oligopeptides (Glu-Pro-Ala-Lys-Ala-Lys-Ala-Lys; EPAK-VI) for the highly selective capture of phosphopeptides from complex biological samples. Under physiological conditions, EPAK-VI can readily self-organize into a robust and complete coating layer mainly composed of β-sheets and β-turns on the surface of Fe
Identifiants
pubmed: 31970520
doi: 10.1007/s00604-019-4096-z
pii: 10.1007/s00604-019-4096-z
doi:
Substances chimiques
Caseins
0
Magnetite Nanoparticles
0
Oligopeptides
0
Peptide Fragments
0
Phosphopeptides
0
graphene oxide
0
Serum Albumin, Bovine
27432CM55Q
Graphite
7782-42-5
Trypsin
EC 3.4.21.4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
144Références
Mikrochim Acta. 2019 Jan 9;186(2):68
pubmed: 30627783
J Mater Chem B. 2019 Apr 14;7(14):2242-2246
pubmed: 32254672
Chem Commun (Camb). 2012 Feb 28;48(18):2418-20
pubmed: 22274859
J Mater Chem B. 2014 Jul 28;2(28):4473-4480
pubmed: 32261549
J Chromatogr A. 2017 Jul 7;1505:56-62
pubmed: 28533032
Mikrochim Acta. 2018 Jun 6;185(7):316
pubmed: 29876662
ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17356-62
pubmed: 26207954
Anal Chem. 2019 Jan 2;91(1):126-141
pubmed: 30457327
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12719-28
pubmed: 24992375
J Chromatogr A. 2017 Jan 20;1481:152-157
pubmed: 28017563
Mikrochim Acta. 2019 Feb 4;186(3):159
pubmed: 30715598
Anal Chem. 2018 Nov 20;90(22):13796-13805
pubmed: 30372032
J Chromatogr A. 2010 Apr 16;1217(16):2606-17
pubmed: 19942223
Talanta. 2017 Dec 1;175:427-434
pubmed: 28842012
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13735-13741
pubmed: 30892013
ACS Appl Mater Interfaces. 2016 Nov 30;8(47):32182-32188
pubmed: 27933851
Anal Chem. 2019 Jan 2;91(1):264-276
pubmed: 30415533
ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8377-92
pubmed: 25845677
Angew Chem Int Ed Engl. 2009;48(32):5875-9
pubmed: 19579243
Angew Chem Int Ed Engl. 2010 Mar 1;49(10):1862-6
pubmed: 20155773
Mikrochim Acta. 2019 Mar 13;186(4):236
pubmed: 30868259
Mikrochim Acta. 2018 Nov 28;185(12):562
pubmed: 30488348
J Chromatogr A. 2018 Aug 24;1564:69-75
pubmed: 29907410
Chem Soc Rev. 2013 Nov 7;42(21):8517-39
pubmed: 23933677
J Am Chem Soc. 2015 Feb 25;137(7):2432-5
pubmed: 25655481
Angew Chem Int Ed Engl. 2014 Jul 1;53(27):6929-32
pubmed: 24846755
Langmuir. 2015 Jun 2;31(21):5891-8
pubmed: 25966872
Talanta. 2018 Apr 1;180:368-375
pubmed: 29332825
J Hazard Mater. 2020 Jan 15;382:121113
pubmed: 31479827
J Mater Chem B. 2018 Jun 21;6(23):3969-3978
pubmed: 32254325
Anal Chim Acta. 2019 Dec 11;1088:63-71
pubmed: 31623717
Mikrochim Acta. 2018 May 25;185(6):309
pubmed: 29802452
Talanta. 2019 Mar 1;194:870-875
pubmed: 30609618
Mikrochim Acta. 2019 Aug 3;186(9):600
pubmed: 31377859