Structure and function of Listeria teichoic acids and their implications.


Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
03 2020
Historique:
received: 25 10 2019
revised: 10 01 2020
accepted: 17 01 2020
pubmed: 24 1 2020
medline: 21 11 2020
entrez: 24 1 2020
Statut: ppublish

Résumé

Teichoic acids (TAs) are the most abundant glycopolymers in the cell wall of Listeria, an opportunistic Gram-positive pathogen that causes severe foodborne infections. Two different structural classes of Listeria TA exist: the polyribitolphosphate-based wall teichoic acid (WTA) that is covalently anchored to the peptidoglycan, and the polyglycerolphosphate-based lipoteichoic acid (LTA) that is tethered to the cytoplasmic membrane. While TA polymers govern many important physiological processes, the diverse glycosylation patterns of WTA result in a high degree of surface variation across the species and serovars of Listeria, which in turn bestows varying effects on fitness, biofilm formation, bacteriophage susceptibility and virulence. We review the advances made over the past two decades, and our current understanding of the relationship between TA structure and function. We describe the various types of TA that have been structurally determined to date, and discuss the genetic determinants known to be involved in TA glycosylation. We elaborate on surface proteins functionally related to TA decoration, as well as the molecular and analytical tools used to probe TAs. We anticipate that the growing knowledge of the Listeria surface chemistry will also be exploited to develop novel diagnostic and therapeutic strategies for this pathogen.

Identifiants

pubmed: 31972870
doi: 10.1111/mmi.14472
doi:

Substances chimiques

Lipopolysaccharides 0
Membrane Proteins 0
Peptidoglycan 0
Teichoic Acids 0
lipoteichoic acid 56411-57-5

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

627-637

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Abachin, E., Poyart, C., Pellegrini, E., Milohanic, E., Fiedler, F., Berche, P., & Trieu-Cuot, P. (2002). Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Molecular Microbiology, 43, 1-14. https://doi.org/10.1046/j.1365-2958.2002.02723.x
Autret, N., Dubail, I., Trieu-Cuot, P., Berche, P., & Charbit, A. (2001). Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infection and Immunity, 69, 2054-2065. https://doi.org/10.1128/IAI.69.4.2054-2065.2001
Bielmann, R., Habann, M., Eugster, M. R., Lurz, R., Calendar, R., Klumpp, J., & Loessner, M. J. (2015). Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology, 477, 110-118. https://doi.org/10.1016/j.virol.2014.12.035
Biswas, R., Martinez, R. E., Gohring, N., Schlag, M., Josten, M., Xia, G., … Peschel, A. (2012). Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity. PLoS ONE, 7, e41415. https://doi.org/10.1371/journal.pone.0041415
Braga, V., Vazquez, S., Vico, V., Pastorino, V., Mota, M. I., Legnani, M., … Varela, G. (2017). Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo-Uruguay. Brazilian Journal of Microbiology, 48, 689-694. https://doi.org/10.1016/j.bjm.2017.01.010
Brauge, T., Faille, C., Sadovskaya, I., Charbit, A., Benezech, T., Shen, Y., … Midelet-Bourdin, G. (2018). The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS ONE, 13, e0190879. https://doi.org/10.1371/journal.pone.0190879
Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G., & Cossart, P. (1997). InlB: An invasion protein of Listeria monocytogenes with a novel type of surface association. Molecular Microbiology, 25, 285-294.
Brown, S., Meredith, T., Swoboda, J., & Walker, S. (2010). Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chemistry & Biology, 17, 1101-1110.
Brown, S., Santa Maria, J. P., Jr., & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology, 67, 313-336. https://doi.org/10.1146/annurev-micro-092412-155620
Brown, S., Zhang, Y. H., & Walker, S. (2008). A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chemistry & Biology, 15, 12-21. https://doi.org/10.1016/j.chembiol.2007.11.011
Cabanes, D., Dehoux, P., Dussurget, O., Frangeul, L., & Cossart, P. (2002). Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends in Microbiology, 10, 238-245. https://doi.org/10.1016/S0966-842X(02)02342-9
Cabanes, D., Dussurget, O., Dehoux, P., & Cossart, P. (2004). Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Molecular Microbiology, 51, 1601-1614. https://doi.org/10.1111/j.1365-2958.2003.03945.x
Campeotto, I., Percy, M. G., MacDonald, J. T., Forster, A., Freemont, P. S., & Grundling, A. (2014). Structural and mechanistic insight into the Listeria monocytogenes two-enzyme lipoteichoic acid synthesis system. Journal of Biological Chemistry, 289, 28054-28069.
Carvalho, F., Atilano, M. L., Pombinho, R., Covas, G., Gallo, R. L., Filipe, S. R., … Cabanes, D. (2015). L-Rhamnosylation of Listeria monocytogenes wall teichoic acids promotes resistance to antimicrobial peptides by delaying interaction with the membrane. PLoS Path, 11, e1004919. https://doi.org/10.1371/journal.ppat.1004919
Carvalho, F., Sousa, S., & Cabanes, D. (2014). How Listeria monocytogenes organizes its surface for virulence. Frontiers in Cellular and Infection Microbiology, 4, 48. https://doi.org/10.3389/fcimb.2014.00048
Carvalho, F., Sousa, S., & Cabanes, D. (2018). l-Rhamnosylation of wall teichoic acids promotes efficient surface association of Listeria monocytogenes virulence factors InlB and Ami through interaction with GW domains. Environmental Microbiology, 20, 3941-3951.
Cheng, Y., Promadej, N., Kim, J. W., & Kathariou, S. (2008). Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b. Applied and Environment Microbiology, 74, 1653-1655. https://doi.org/10.1128/AEM.01773-07
Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: A new paradigm for antimicrobial therapy. Nature Chemical Biology, 3, 541-548. https://doi.org/10.1038/nchembio.2007.24
Datta, A. R., & Burall, L. S. (2018). Serotype to genotype: The changing landscape of listeriosis outbreak investigations. Food Microbiology, 75, 18-27. https://doi.org/10.1016/j.fm.2017.06.013
D'Elia, M. A., Millar, K. E., Bhavsar, A. P., Tomljenovic, A. M., Hutter, B., Schaab, C., … Brown, E. D. (2009). Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. Chemistry & Biology, 16, 548-556. https://doi.org/10.1016/j.chembiol.2009.04.009
Denes, T., den Bakker, H. C., Tokman, J. I., Guldimann, C., & Wiedmann, M. (2015). Selection and characterization of phage-resistant mutant strains of Listeria monocytogenes reveal host genes linked to phage adsorption. Applied and Environment Microbiology, 81, 4295-4305. https://doi.org/10.1128/AEM.00087-15
Denyes, J. M., Dunne, M., Steiner, S., Mittelviefhaus, M., Weiss, A., Schmidt, H., … Loessner, M. J. (2017). Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of salmonella cells. Applied and Environment Microbiology, 83, e00277-17. https://doi.org/10.1128/AEM.00277-17
Driguez, P. A. (2017) Immunogenic compositions against S. aureus. WO Patent WO/2017/064190.
Dunne, M., Hupfeld, M., Klumpp, J., & Loessner, M. J. (2018) Molecular basis of bacterial host interactions by gram-positive targeting bacteriophages. Viruses, 10(8), 397. https://doi.org/10.3390/v10080397
Dunne, M., & Loessner, M. J. (2019). Modified bacteriophage tail fiber proteins for labeling, immobilization, capture, and detection of bacteria. Methods in Molecular Biology, 1918, 67-86.
Eugster, M. R., Haug, M. C., Huwiler, S. G., & Loessner, M. J. (2011). The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Molecular Microbiology, 81, 1419-1432. https://doi.org/10.1111/j.1365-2958.2011.07774.x
Eugster, M. R., & Loessner, M. J. (2011). Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS. PLoS ONE, 6, e21500. https://doi.org/10.1371/journal.pone.0021500
Eugster, M. R., & Loessner, M. J. (2012). Wall teichoic acids restrict access of bacteriophage endolysin Ply118, Ply511, and PlyP40 cell wall binding domains to the Listeria monocytogenes peptidoglycan. Journal of Bacteriology, 194, 6498-6506. https://doi.org/10.1128/JB.00808-12
Eugster, M. R., Morax, L. S., Huls, V. J., Huwiler, S. G., Leclercq, A., Lecuit, M., & Loessner, M. J. (2015). Bacteriophage predation promotes serovar diversification in Listeria monocytogenes. Molecular Microbiology, 97, 33-46.
Faith, N., Kathariou, S., Cheng, Y., Promadej, N., Neudeck, B. L., Zhang, Q., … Czuprynski, C. (2009). The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice. Foodborne Pathogens and Disease, 6, 39-48.
Fiedler, F. (1988). Biochemistry of the cell surface of Listeria strains: A locating general view. Infection, 16(Suppl 2), S92-97. https://doi.org/10.1007/BF01639729
Fujii, H., Kamisango, K., Nagaoka, M., Uchikawa, K., Sekikawa, I., Yamamoto, K., & Azuma, I. (1985). Structural study on teichoic acids of Listeria monocytogenes types 4a and 4d. Journal of Biochemistry, 97, 883-891.
Gasanov, U., Hughes, D., & Hansbro, P. M. (2005). Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiology Reviews, 29, 851-875.
Gerlach, D., Guo, Y., De Castro, C., Kim, S. H., Schlatterer, K., Xu, F. F., … Peschel, A. (2018). Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature, 563, 705-709. https://doi.org/10.1038/s41586-018-0730-x
Goffin, C., & Ghuysen, J. M. (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: Presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiology and Molecular Biology Reviews, 66, 702-738. https://doi.org/10.1128/MMBR.66.4.702-738.2002
Guerrero-Ferreira, R. C., Hupfeld, M., Nazarov, S., Taylor, N. M., Shneider, M. M., Obbineni, J. M., … Leiman, P. G. (2019) Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells. EMBO Journal, 38, e99455.
Habann, M., Leiman, P. G., Vandersteegen, K., Van den Bossche, A., Lavigne, R., Shneider, M. M., … Klumpp, J. (2014). Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Molecular Microbiology, 92, 84-99.
Jonquieres, R., Bierne, H., Fiedler, F., Gounon, P., & Cossart, P. (1999). Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: A novel mechanism of protein association at the surface of gram-positive bacteria. Molecular Microbiology, 34, 902-914. https://doi.org/10.1046/j.1365-2958.1999.01652.x
Kamisango, K., Fujii, H., Okumura, H., Saiki, I., Araki, Y., Yamamura, Y., & Azuma, I. (1983). Structural and immunochemical studies of teichoic acid of Listeria monocytogenes. Journal of Biochemistry, 93, 1401-1409.
Kamisango, K., Saiki, I., Tanio, Y., Okumura, H., Araki, Y., Sekikawa, I., … Yamamura, Y. (1982). Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes. Journal of Biochemistry, 92, 23-33.
Kretzer, J. W., Schmelcher, M., & Loessner, M. J. (2018) Ultrasensitive and fast diagnostics of viable listeria cells by CBD magnetic separation combined with A511::luxAB detection. Viruses 10. https://doi.org/10.3390/v10110626
Kuenemann, M. A., Spears, P. A., Orndorff, P. E., & Fourches, D. (2018). In silico predicted glucose-1-phosphate uridylyltransferase (GalU) inhibitors block a key pathway required for listeria virulence. Molecular Informatics, 37, e1800004.
Lan, Z., Fiedler, F., & Kathariou, S. (2000). A sheep in wolf's clothing: Listeria innocua strains with teichoic acid-associated surface antigens and genes characteristic of Listeria monocytogenes serogroup 4. Journal of Bacteriology, 182, 6161-6168. https://doi.org/10.1128/JB.182.21.6161-6168.2000
Lei, X. H., Fiedler, F., Lan, Z., & Kathariou, S. (2001). A novel serotype-specific gene cassette (gltA-gltB) is required for expression of teichoic acid-associated surface antigens in Listeria monocytogenes of serotype 4b. Journal of Bacteriology, 183, 1133-1139. https://doi.org/10.1128/JB.183.4.1133-1139.2001
Loessner, M. J., Kramer, K., Ebel, F., & Scherer, S. (2002). C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology, 44, 335-349. https://doi.org/10.1046/j.1365-2958.2002.02889.x
Marino, M., Banerjee, M., Jonquieres, R., Cossart, P., & Ghosh, P. (2002). GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO Journal, 21, 5623-5634. https://doi.org/10.1093/emboj/cdf558
Maury, M. M., Tsai, Y. H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., … Lecuit, M. (2016). Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nature Genetics, 48, 308-313. https://doi.org/10.1038/ng.3501
May, J. J., Finking, R., Wiegeshoff, F., Weber, T. T., Bandur, N., Koert, U., & Marahiel, M. A. (2005). Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. FEBS Journal, 272, 2993-3003. https://doi.org/10.1111/j.1742-4658.2005.04700.x
McLauchlin, J. (1990). Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. European Journal of Clinical Microbiology and Infectious Diseases, 9, 210-213. https://doi.org/10.1007/BF01963840
Orndorff, P. E. (2016). Use of bacteriophage to target bacterial surface structures required for virulence: A systematic search for antibiotic alternatives. Current Genetics, 62, 753-757. https://doi.org/10.1007/s00294-016-0603-5
Percy, M. G., & Grundling, A. (2014). Lipoteichoic acid synthesis and function in gram-positive bacteria. Annual Review of Microbiology, 68, 81-100. https://doi.org/10.1146/annurev-micro-091213-112949
Percy, M. G., Karinou, E., Webb, A. J., & Grundling, A. (2016). Identification of a lipoteichoic acid glycosyltransferase enzyme reveals that GW-domain containing proteins can be retained in the cell wall of Listeria monocytogenes in the absence of lipoteichoic acid or its modifications. Journal of Bacteriology, 198, 2029-2042. https://doi.org/10.1128/JB.00116-16
Price, N. P., & Tsvetanova, B. (2007). Biosynthesis of the tunicamycins: A review. The Journal of Antibiotics (Tokyo), 60, 485-491. https://doi.org/10.1038/ja.2007.62
Promadej, N., Fiedler, F., Cossart, P., Dramsi, S., & Kathariou, S. (1999). Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. Journal of Bacteriology, 181, 418-425. https://doi.org/10.1128/JB.181.2.418-425.1999
Pucciarelli, M. G., Bierne, H., & Portillo, F. G. (2007) The cell wall of Listeria monocytogenes and its role in pathogenicity. In H. Goldfine, & H. Shen (Eds.), Listeria monocytogenes: Pathogenesis and Host Response (pp. 81-110) Boston, MA: Springer.
Radoshevich, L., & Cossart, P. (2018). Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 16, 32-46. https://doi.org/10.1038/nrmicro.2017.126
Reichmann, N. T., & Grundling, A. (2011). Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiology Letters, 319, 97-105. https://doi.org/10.1111/j.1574-6968.2011.02260.x
Rismondo, J., Percy, M. G., & Grundling, A. (2018). Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. Journal of Biological Chemistry, 293, 3293-3306. https://doi.org/10.1074/jbc.RA117.001614
Schmelcher, M., & Loessner, M. J. (2014). Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria. Methods in Molecular Biology, 1157, 141-156.
Schmelcher, M., Shabarova, T., Eugster, M. R., Eichenseher, F., Tchang, V. S., Banz, M., & Loessner, M. J. (2010). Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Applied and Environment Microbiology, 76, 5745-5756. https://doi.org/10.1128/AEM.00801-10
Seeliger, H. P. (1975). Serovariants of Listeria monocytogenes and other Listeria species. Acta microbiologica Academiae Scientiarum Hungaricae, 22, 179-181.
Serizawa, M., Kodama, K., Yamamoto, H., Kobayashi, K., Ogasawara, N., & Sekiguchi, J. (2005). Functional analysis of the YvrGHb two-component system of Bacillus subtilis: Identification of the regulated genes by DNA microarray and northern blot analyses. Bioscience, Biotechnology, and Biochemistry, 69, 2155-2169.
Shen, Y., Boulos, S., Sumrall, E., Gerber, B., Julian-Rodero, A., Eugster, M. R., … Loessner, M. J. (2017). Structural and functional diversity in Listeria cell wall teichoic acids. Journal of Biological Chemistry, 292, 17832-17844.
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414. https://doi.org/10.1101/cshperspect.a000414
Smith, A. M., Tau, N. P., Smouse, S. L., Allam, M., Ismail, A., Ramalwa, N. R., … Thomas, J. (2019). Outbreak of Listeria monocytogenes in South Africa, 2017-2018: Laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathogens and Disease, 16, 524-530.
Spears, P. A., Havell, E. A., Hamrick, T. S., Goforth, J. B., Levine, A. L., Thomas Abraham, S., … Orndorff, P. E. (2016). Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread. Molecular Microbiology, 101, 714-730.
Spears, P. A., Suyemoto, M. M., Palermo, A. M., Horton, J. R., Hamrick, T. S., Havell, E. A., & Orndorff, P. E. (2008). A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infection and Immunity, 76, 4046-4054. https://doi.org/10.1128/IAI.00283-08
Sumrall, E. T., Schefer, C. R. E., Rismondo, J., Boulos, S., Gründling, A., Loessner, M. J., & Shen, Y. (2020). Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InlB on the surface of serovar 4b Listeria monocytogenes. Molecular Microbiology, 113, 638-649.
Sumrall, E. T., Shen, Y., Keller, A. P., Rismondo, J., Pavlou, M., Eugster, M. R., … Loessner, M. J. (2019). Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Path, 15, e1008032. https://doi.org/10.1371/journal.ppat.1008032
Tolba, M., Ahmed, M. U., Tlili, C., Eichenseher, F., Loessner, M. J., & Zourob, M. (2012). A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst, 137, 5749-5756. https://doi.org/10.1039/c2an35988j
Tomita, S., Furihata, K., Tanaka, N., Satoh, E., Nukada, T., & Okada, S. (2012). Determination of strain-specific wall teichoic acid structures in Lactobacillus plantarum reveals diverse alpha-D-glucosyl substitutions and high structural uniformity of the repeating units. Microbiology, 158, 2712-2723.
Uchikawa, K., Sekikawa, I., & Azuma, I. (1986a). Structural studies on lipoteichoic acids from four Listeria strains. Journal of Bacteriology, 168, 115-122. https://doi.org/10.1128/JB.168.1.115-122.1986
Uchikawa, K., Sekikawa, I., & Azuma, I. (1986b). Structural studies on teichoic acids in cell walls of several serotypes of Listeria monocytogenes. Journal of Biochemistry, 99, 315-327.
van Dalen, R., Molendijk, M. M., Ali, S., van Kessel, K. P. M., Aerts, P., van Strijp, J. A. G., … van Sorge, N. M. (2019). Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature, 572, E1-E2. https://doi.org/10.1038/s41586-019-1416-8
van der Es, D., Berni, F., Hogendorf, W. F. J., Meeuwenoord, N., Laverde, D., van Diepen, A., … Codee, J. D. C. (2018). Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry, 24, 4014-4018. https://doi.org/10.1002/chem.201800153
van der Es, D., Hogendorf, W. F., Overkleeft, H. S., van der Marel, G. A., & Codee, J. D. (2017). Teichoic acids: Synthesis and applications. Chemical Society Reviews, 46, 1464-1482. https://doi.org/10.1039/C6CS00270F
Webb, A. J., Karatsa-Dodgson, M., & Grundling, A. (2009). Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Molecular Microbiology, 74, 299-314.
Weidenmaier, C., & Lee, J. C. (2017). Structure and function of surface polysaccharides of Staphylococcus aureus. Current Topics in Microbiology and Immunology, 409, 57-93.
Wendlinger, G., Loessner, M. J., & Scherer, S. (1996). Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology, 142(Pt 4), 985-992. https://doi.org/10.1099/00221287-142-4-985
Yin, Y., Yao, H., Doijad, S., Kong, S., Shen, Y., Cai, X., … Jiao, X. (2019). A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nature Communications, 10, 4283. https://doi.org/10.1038/s41467-019-12072-1
Zhu, X., Liu, D., Singh, A. K., Drolia, R., Bai, X., Tenguria, S., & Bhunia, A. K. (2018). Tunicamycin mediated inhibition of wall teichoic acid affects Staphylococcus aureus and Listeria monocytogenes cell morphology, Biofilm formation and virulence. Frontiers in Microbiology, 9, 1352. https://doi.org/10.3389/fmicb.2018.01352

Auteurs

Eric T Sumrall (ET)

Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.

Anja P Keller (AP)

Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.

Yang Shen (Y)

Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.

Martin J Loessner (MJ)

Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.

Articles similaires

Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH