From cactus to crop: genomic insights of a beneficial and non-pathogenic Curtobacterium flaccumfaciens strain and the evolution of its pathosystem.


Journal

Molecular genetics and genomics : MGG
ISSN: 1617-4623
Titre abrégé: Mol Genet Genomics
Pays: Germany
ID NLM: 101093320

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 03 10 2023
accepted: 10 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

With the advent of advanced sequencing technologies, new insights into the genomes of pathogens, including those in the genus Curtobacterium, have emerged. This research investigates a newly isolated C. flaccumfaciens strain 208 (Cf208) from Arthrocereus glaziovii, and endemic plant from Iron Quadrangle. Previous results show that Cf208 exhibits the potential to remediate soils, facilitating the growth of tomato plants. Furthermore, Cf208 showed no virulence towards bean plants, thus, confounding its phytopathogenic origins. Using a comprehensive comparative genomics approach, we analyzed the Cf208 genome against 34 other Curtobacterium strains, aiming to discern the genomic landmarks associated with its adaptation as an endophyte and its avirulence in bean crops. This revealed a predominant core genome comprising about 2426 genes (68%). Notably, Cf208 possesses a unique plasmid, pCF208-73, which contains 84 unique genes (2.5%). However, unlike the plasmids previously described for pathogenic strains, pCF208-73 does not feature genes associated with virulence induction. In contrast, while several genes traditionally linked to virulence, like pectate lyases and proteases were identified, but the T4P apparatus emerged as new crucial factor for understanding virulence in the Curtobacterium genus. The presence or absence of this apparatus, especially in strains from different clades, may determine their virulence towards leguminous plants. In conclusion, this work highlights the significance of comparative genomics in unraveling the complexities of pathogenicity within the Curtobacterium genus. Our findings suggest that, although the limited genetic variations, specific genes, particularly those linked to the T4P apparatus, play a fundamental role in their interactions with host plants.

Identifiants

pubmed: 39485552
doi: 10.1007/s00438-024-02194-7
pii: 10.1007/s00438-024-02194-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

105

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de Minas Gerais
ID : APQ-02357-17
Organisme : Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal de Ouro Preto
ID : LMM-grants
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : LMM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alföldi J, Lindblad-Toh K (2013) Comparative genomics as a tool to understand evolution and disease. Genome Res 23:1063. https://doi.org/10.1101/GR.157503.113
doi: 10.1101/GR.157503.113 pubmed: 23817047 pmcid: 3698499
Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom. https://doi.org/10.1186/1471-2164-12-402
doi: 10.1186/1471-2164-12-402
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
doi: 10.1016/S0022-2836(05)80360-2 pubmed: 2231712
Assis RDAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017) Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci Rep 7:16133. https://doi.org/10.1038/s41598-017-16325-1
doi: 10.1038/s41598-017-16325-1 pubmed: 29170530 pmcid: 5700972
Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom. https://doi.org/10.1186/1471-2164-9-75
doi: 10.1186/1471-2164-9-75
Bahar O, Goffer T, Burdman S (2009) Type IV pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol Plant-Microbe Interact 22:909–920. https://doi.org/10.1094/MPMI
doi: 10.1094/MPMI pubmed: 19589067
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
doi: 10.1089/cmb.2012.0021 pubmed: 22506599 pmcid: 3342519
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP, Medema MH, Weber T (2021) AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335
doi: 10.1093/nar/gkab335 pubmed: 33978755 pmcid: 8262755
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170
doi: 10.1093/BIOINFORMATICS/BTU170 pubmed: 24695404 pmcid: 4103590
Bragard C, Dehnen-Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Civera AV, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques MA (2020) Pest categorisation of the non-EU phytoplasmas of tuber-forming Solanum spp. EFSA J 18:e06356. https://doi.org/10.2903/J.EFSA.2020.6356
doi: 10.2903/J.EFSA.2020.6356 pubmed: 33376553 pmcid: 7757785
Burdman S, Bahar O, Parker JK, de la Fuente L (2011) Involvement of type IV Pili in pathogenicity of plant pathogenic bacteria. Genes (Basel) 2:706–735. https://doi.org/10.3390/GENES2040706
doi: 10.3390/GENES2040706 pubmed: 24710288
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformat. https://doi.org/10.1186/1471-2105-10-421
doi: 10.1186/1471-2105-10-421
Caneschi WL, Felestrino ÉB, Fonseca NP, Villa MM, Lemes CGC, Cordeiro IF, Assis RAB, Sanchez AB, Vieira IT, Kamino LHY, Carmo FF, Garcia CCM, Moreira LM (2018) Brazilian ironstone plant communities as reservoirs of culturable bacteria with diverse biotechnological potential. Front Microbiol 9:1638. https://doi.org/10.3389/fmicb.2018.01638
doi: 10.3389/fmicb.2018.01638 pubmed: 30083146 pmcid: 6064971
Cantarel BI, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233. https://doi.org/10.1093/NAR/GKN663
doi: 10.1093/NAR/GKN663 pubmed: 18838391
Carrau A, Tano J, Moyano L, Ripa MB, Petrocelli S, Piskulic L, Moreira LM, Patané JSL, Setubal JC, Orellano EG (2023) A novel BLUF photoreceptor modulates the Xanthomonas citri subsp. citri–host plant interaction. Photochem Photobiol Sci. https://doi.org/10.1007/s43630-023-00420-6
doi: 10.1007/s43630-023-00420-6 pubmed: 37209300
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552
doi: 10.1093/oxfordjournals.molbev.a026334 pubmed: 10742046
Chen G, Khojasteh M, Taheri-Dehkordi A, Taghavi SM, Rahimi T, Osdaghi E (2021) Complete genome sequencing provides novel insight into the virulence repertories and phylogenetic position of dry beans pathogen curtobacterium flaccumfaciens pv. flaccumfaciens. Phytopathol 111(2):268-280. https://doi.org/10.1094/PHYTO-06-20-0243-R
Chen G, Khojasteh M, Taheri-Dehkordi A, Taghavi SM, Rahimi T, Osdaghi E (2020) Complete genome sequencing provides novel insight into the virulence repertories and phylogenetic position of dry beans pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Phytopathology 111:268–280. https://doi.org/10.1094/PHYTO-06-20-0243-R
doi: 10.1094/PHYTO-06-20-0243-R pubmed: 32716255
Chlebek JL, Denise R, Craig L, Dalia AB (2021) Motor-independent retraction of type IV pili is governed by an inherent property of the pilus filament. Proc Natl Acad Sci USA 118:e2102780118. https://doi.org/10.1073/pnas.2102780118
doi: 10.1073/pnas.2102780118 pubmed: 34789573 pmcid: 8617508
Coelho MVS, Guimarães PM, Marques ASA, Martins OM (2004) Curtobacterium flaccumfaciens pv. flaccumfaciens murcha bacteriana do feijoeiro e da soja: alto risco de disseminação no Brasil. Embrapa-Comun Técnico 117:1–8
de Theodoro GF, Maringoni AC, Chumpati AA, de Correia HC, Theodoro JVC, Nogueira RJ (2010) First report of bacterial wilt of common bean caused by Curtobacterium flaccumfaciens pv. flaccumfaciens in Mato Grosso do Sul. J Plant Pathol 92:S110–S110
Deloger M, El Karoui M, Petit MA (2009) A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99. https://doi.org/10.1128/JB.01202-08
doi: 10.1128/JB.01202-08 pubmed: 18978054
Dimkić I, Bhardwaj V, Carpentieri-Pipolo V, Kuzmanović N, Degrassi G (2021) The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence. PLoS One 16:e0259465. https://doi.org/10.1371/JOURNAL.PONE.0259465
doi: 10.1371/JOURNAL.PONE.0259465 pubmed: 34731210 pmcid: 8565777
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Shneider M, Ignatov A, Miroshnikov K (2022) Curtobacterium spp. and Curtobacterium flaccumfaciens: phylogeny, genomics-based taxonomy, pathogenicity, and diagnostics. Curr Issues Mol Biol 44:889–927. https://doi.org/10.3390/CIMB44020060/S1
doi: 10.3390/CIMB44020060/S1 pubmed: 35723345 pmcid: 8929003
Felestrino ÉB, Santiago IF, Freitas LS, Rosa LH, Ribeiro SP, Moreira LM (2017) Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Front Microbiol 8:172. https://doi.org/10.3389/fmicb.2017.00172
doi: 10.3389/fmicb.2017.00172 pubmed: 28239369 pmcid: 5300976
Felestrino ÉB, Vieira IT, Caneschi WL, Cordeiro IF, Assis RAB, Lemes CGC, Fonseca NP, Sanchez AB, Cepeda JCC, Ferro JA, Garcia CCM, Carmo FF, Kamino LHY, Moreira LM (2018) Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. World J Microbiol Biotechnol 34:156. https://doi.org/10.1007/s11274-018-2538-0
doi: 10.1007/s11274-018-2538-0 pubmed: 30284648
Garcia AL, Torres SCZ, Heredia M, Lopes SA (2012) Citrus responses to Xylella fastidiosa infection. Plant Dis 96:1245–1249. https://doi.org/10.1094/PDIS-10-11-0868-RE
doi: 10.1094/PDIS-10-11-0868-RE pubmed: 30727147
Gonçalves RM, Balbi-Peña MI, Soman JM, Maringoni AC, Taghouti G, Fischer-Le Saux M, Portier P (2019) Genetic diversity of Curtobacterium flaccumfaciens revealed by multilocus sequence analysis. Eur J Plant Pathol 154:189–202. https://doi.org/10.1007/s10658-018-01648-0
doi: 10.1007/s10658-018-01648-0
Haft DH (2015) Using comparative genomics to drive new discoveries in microbiology. Curr Opin Microbiol. https://doi.org/10.1016/J.MIB.2014.11.017
doi: 10.1016/J.MIB.2014.11.017 pubmed: 25617609 pmcid: 4325363
Harveson RM, Schwartz HF, Urrea CA, Yonts CD (2015) Bacterial wilt of dry-edible beans in the central high plains of the U.S.: past, present, and future. Plant Dis 99:1665–1677. https://doi.org/10.1094/PDIS-03-15-0299-FE
doi: 10.1094/PDIS-03-15-0299-FE pubmed: 30699522
Hedges F (1922) A bacterial wilt of the bean caused by Bacterium flaccumfaciens nov. SP Science 55:433–434. https://doi.org/10.1126/science.55.1425.433
doi: 10.1126/science.55.1425.433 pubmed: 17758388
Herbes DH, Theodoro GF, Maringoni AC, Dal Piva CA, De Abreu L (2008) Detecção de Curtobacterium flaccumfaciens pv. flaccumfaciens em sementes de feijoeiro produzidas em santa catarina. Trop Plant Pathol 33:153–156. https://doi.org/10.1590/S1982-56762008000200010
doi: 10.1590/S1982-56762008000200010
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M (2023) KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51:D587–D592. https://doi.org/10.1093/NAR/GKAC963
doi: 10.1093/NAR/GKAC963 pubmed: 36300620
Khojasteh-Poshtiri, M, Taghvi, SM, Arab, AF, Osdaghi, E (2016) First Report of pathogenic strains Curtobacterium flaccumfaciens pv. flaccumfaciens on alfalfa in Iran. Proceedings of 22th Iranian Plant Protection Congress, 27–30.
Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genom 15:141–161. https://doi.org/10.1007/S10142-015-0433-4
doi: 10.1007/S10142-015-0433-4
Li Q, Sun L (2021) Genomic analysis of Curtobacterium Flaccumfaciens reveals the differences between pathogenic and nonpathogenic strains. Reasearch Sq. https://doi.org/10.21203/RS.3.RS-335330/V1
doi: 10.21203/RS.3.RS-335330/V1
Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/GR.1224503
doi: 10.1101/GR.1224503 pubmed: 12952885 pmcid: 403725
Li Y, Hao G, Galvani CD, Meng Y, De La Fuente L, Hoch HC, Burr TJ (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153:719–726. https://doi.org/10.1099/MIC.0.2006/002311-0
doi: 10.1099/MIC.0.2006/002311-0 pubmed: 17322192
Maringoni AC (2002) Comportamento de cultivares de feijoeiro comum à murcha-de-curtobacterium. Fitopatol Bras 27:157–162
doi: 10.1590/S0100-41582002000200006
Maringoni AC, Rosa EF (1997) Ocorrência de Curtobacterium flaccumfaciens pv. flaccumfaciens em feijoeiro no Estado de São Paulo. Summa Phytopathol 23:160–162
Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314. https://doi.org/10.1146/AnnualRevMicrobiol56.012302.160938
doi: 10.1146/AnnualRevMicrobiol56.012302.160938 pubmed: 12142488
Melo LC et al (2019) BRS FC104-super-early carioca seeded common bean cultivar with high yield potential. Crop Breed Appl Biotechnol 19:471-475
doi: 10.1590/1984-70332019v19n4c67
Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567. https://doi.org/10.1128/jb.187.16.5560-5567.2005
doi: 10.1128/jb.187.16.5560-5567.2005 pubmed: 16077100 pmcid: 1196070
Merfa MV, Zhu X, Shantharaj D, Gomez LM, Naranjo E, Potnis N, Cobine PA, De La Fuente L (2023) Complete functional analysis of type IV pilus components of a reemergent plant pathogen reveals neofunctionalization of paralog genes. Plos Pathog 19:e1011154. https://doi.org/10.1371/JOURNAL.PPAT.1011154
doi: 10.1371/JOURNAL.PPAT.1011154 pubmed: 36780566 pmcid: 9956873
Osdaghi E, Lak MR (2015) Occurrence of a new orange variant of Curtobacterium flaccumfaciens pv. flaccumfaciens, causing common bean wilt in Iran. J Phytopathol 163:867–871. https://doi.org/10.1111/JPH.12322
doi: 10.1111/JPH.12322
Osdaghi E, Taghavi SM, Fazliarab A, Elahifard E, Lamichhane JR (2015) Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: an emerging bacterial pathogen in Iran. Crop Prot 78:185–192. https://doi.org/10.1016/J.CROPRO.2015.09.015
doi: 10.1016/J.CROPRO.2015.09.015
Osdaghi E, Young AJ, Harveson RM (2020) Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: a new threat from an old enemy. Mol Plant Pathol 21:605–621
doi: 10.1111/mpp.12926 pubmed: 32097989 pmcid: 7170776
Osdaghi E, Taghouti G, Dutrieux C, Taghavi SM, Fazliarab A, Briand M, Saux MFL, Portier P, Jacques MA (2022) Whole genome resources of 17 Curtobacterium flaccumfaciens Strains including Pathotypes of C. flaccumfaciens pv. betae, C. flaccumfaciens pv. oortii, and C. flaccumfaciens pv. poinsettiae. Mol Plant-Microbe Interact 35:352–356. https://doi.org/10.1094/MPMI-11-21-0282-A
doi: 10.1094/MPMI-11-21-0282-A pubmed: 35021852
Puia JD, Murari RR, Borsato LC, Sugahara VH, Machineski GS, Canteri MG, Vigo SC (2021) Protocol for detecting Curtobacterium flaccumfaciens pv. flaccumfaciens in the leaves of infected bean plants (Phaseolus vulgaris L.). Crop Protect 43:e51031
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9(7):671–675
doi: 10.1038/nmeth.2089 pubmed: 22930834 pmcid: 5554542
Setubal JC, Almeida NF, Wattam AR (2018) Comparative genomics for prokaryotes. Methods Mol Biol 1704:55–78. https://doi.org/10.1007/978-1-4939-7463-4_3
doi: 10.1007/978-1-4939-7463-4_3 pubmed: 29277863
Soares RM, Fantinato GGP, Darben LM, Marcelino-Guimarães FC, Seixas CDS, de Souza Carneiro GE (2013) First report of Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean in Brazil. Trop Plant Pathol 38:452–454. https://doi.org/10.1590/S1982-56762013000500012
doi: 10.1590/S1982-56762013000500012
Soares RM, Fantinato GGP, Ferreira EGC, Marcelino-Guimarães FC (2018) Plant-to-seed transmission of Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean. Trop Plant-Pathol 43:376–379
doi: 10.1007/s40858-018-0227-z
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033
doi: 10.1093/BIOINFORMATICS/BTU033 pubmed: 24451623 pmcid: 3998144
Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569
doi: 10.1093/nar/gkw569 pubmed: 27342282 pmcid: 5001611
Uesugi CH, Freitas MA, Menezes JR (2003) Ocorrência de Curtobacterium flaccumfaciens pv. flaccumfaciens em feijoeiro, em Goiás e no distrito federal. Fitopatol Bras 28:324–324. https://doi.org/10.1590/S0100-41582003000300019
doi: 10.1590/S0100-41582003000300019
Vaghefi N, Adorada DL, Huth L, Kelly LA, Poudel B, Young A, Sparks AH (2021) Whole-genome data from Curtobacterium flaccumfaciens pv. flaccumfaciens strains associated with tan spot of mungbean and soybean reveal diverse plasmid profiles. Mol Plant-Microbe Interact 34:1216–1222. https://doi.org/10.1094/MPMI-05-21-0116-A/ASSET/IMAGES/LARGE/MPMI-05-21-0116-AF1.JPEG
doi: 10.1094/MPMI-05-21-0116-A/ASSET/IMAGES/LARGE/MPMI-05-21-0116-AF1.JPEG pubmed: 34185567
Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677. https://doi.org/10.1093/BIOINFORMATICS/BTT476
doi: 10.1093/BIOINFORMATICS/BTT476 pubmed: 23990416 pmcid: 3799473

Auteurs

Dilson Fagundes Ribeiro (DF)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Jéssica Pereira de Matos (JP)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Lorrana Cachuite Mendes Rocha (LCM)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Ana Karla da Silva (AK)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Camila Henriques de Paula (CH)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Isabella Ferreira Cordeiro (IF)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Camila Gracyelle de Carvalho Lemes (CG)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

Angélica Bianchini Sanchez (AB)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.

Camila Carrião Machado Garcia (CCM)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
Departamento de Ciências Biológicas, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.

João Carlos Setubal (JC)

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.

Robson Francisco de Souza (RF)

Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

Alessandro de Mello Varani (A)

Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil.

Nalvo Franco Almeida (NF)

Faculdade de Computação, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, 79070-900, Brazil. nalvo@facom.ufms.br.

Leandro Marcio Moreira (LM)

Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil. lmmorei@gmail.com.
Departamento de Ciências Biológicas, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil. lmmorei@gmail.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH