Monte Carlo simulation and thermodynamic integration applied to protein charge transfer.


Journal

Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362

Informations de publication

Date de publication:
30 04 2020
Historique:
received: 28 10 2019
revised: 29 12 2019
accepted: 02 01 2020
pubmed: 26 1 2020
medline: 27 5 2021
entrez: 26 1 2020
Statut: ppublish

Résumé

We introduce a combination of Monte Carlo simulation and thermodynamic integration methods to address a model problem in free energy computations, electron transfer in proteins. The feasibility of this approach is tested using the ferredoxin protein from Clostridium acidurici. The results are compared to numerical solutions of the Poisson-Boltzmann equation and data from recent molecular dynamics simulations on charge transfer in a protein complex, the NrfHA nitrite reductase of Desulfovibrio vulgaris. Despite the conceptual and computational simplicity of the Monte Carlo approach, the data agree well with those obtained by other methods. A link to experiments is established via the cytochrome subunit of the bacterial photosynthetic reaction center of Rhodopseudomonas viridis.

Identifiants

pubmed: 31981372
doi: 10.1002/jcc.26155
doi:

Substances chimiques

Cytochromes 0
Ferredoxins 0
Photosynthetic Reaction Center Complex Proteins 0
Nitrite Reductases EC 1.7.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1105-1115

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

R. E. Blankenship, Molecular mechanisms of photosynthesis, Blackwell Science, Oxford; Malden, MA 2002.
B. E. Ramirez, B. G. Malmström, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. U. S. A. 1995, 92(26), 11949.
C. Wirth, U. Brandt, C. Hunte, V. Zickermann, Biochim. Biophys. Acta, Bioenerg. 2016, 1857(7), 902.
H.-A. Wagenknecht, H. B. Gray, Charge transfer in DNA from mechanism to application, Wiley-VCH, Weinheim 2006.
K. Schulten, C. E. Swenberg, A. Weller, Z. Phys. Chem. 1978, 111(1), 1.
M. Sugihara, V. Buss, P. Entel, M. Elstner, T. Frauenheim, Biochemistry 2002, 41(51), 15259.
B. K. Burgess, D. Lowe, J. Chem. Rev. 1996, 96(7), 2983.
O. Einsle, A. Messerschmidt, P. Stach, G. P. Bourenkov, H. D. Bartunik, R. Huber, P. M. H. Kroneck, Nature 1999, 400(6743), 476.
R. A. Marcus, J. Chem. Phys. 1956, 24(5), 966.
C. Creutz, H. Taube, J. Am. Chem. Soc. 1973, 95(4), 1086.
T. Cramer, T. Steinbrecher, A. Labahn, T. Koslowski, Phys. Chem. Chem. Phys. 2005, 7(24), 4039.
N. F. Mott, Metal-insulator transitions, 2nd ed., Taylor & Francis, London; New York 1990.
T. Koslowski, J. Chem. Phys. 2000, 113(23), 10703.
S. Wherland, I. Pecht, Biochemistry 1978, 17(13), 2585.
T. Steinbrecher, A. Labahn, Curr. Med. Chem. 2010, 17(8), 767.
N. Horton, M. Lewis, Protein Sci. 2008, 1(1), 169.
J. S. Patel, F. M. Ytreberg, J. Chem. Theory Comput. 2018, 14(2), 991.
F. Pontiggia, D. Pachov, M. Clarkson, J. Villali, M. Hagan, V. Pande, D. Kern, Nat. Commun. 2015, 6(1), 7284.
W. Im, J. Lee, T. Kim, H. Rui, J. Comput. Chem. 2009, 30(11), 1622.
G. A. Ross, H. E. Bruce Macdonald, C. Cave-Ayland, A. I. Cabedo Martinez, J. W. Essex, J. Chem. Theory Comput. 2017, 13(12), 6373.
H. E. Bruce Macdonald, C. Cave-Ayland, G. A. Ross, J. W. Essex, J. Chem. Theory Comput. 2018, 14(12), 6586.
S. Na, A. Bauß, M. Langenmaier, T. Koslowski, Phys. Chem. Chem. Phys. 2017, 19(29), 18938.
A. Bauß, T. Koslowski, Phys. Chem. Chem. Phys. 2015, 17(6), 4483.
A. Bauß, M. Langenmaier, E. Strittmatter, D. A. Plattner, T. Koslowski, J. Phys. Chem. B 2016, 120(22), 4937.
S. Na, S. Jurkovic, T. Friedrich, T. Koslowski, Phys. Chem. Chem. Phys. 2018, 20(30), 20023.
D. Gnandt, S. Na, T. Koslowski, Biophys. Chem. 2018, 241, 1.
D. Gnandt, T. Koslowski, Phys. Chem. Chem. Phys. 2019, 21(34), 18595.
W. L. Jorgensen, J. Tirado-Rives, J. Comput. Chem. 2005, 26(16), 1689.
M.-L. Tan, E. A. Dolan, T. Ichiye, J. Phys. Chem. B 2004, 108(52), 20435.
I. Daizadeh, D. M. Medvedev, A. A. Stuchebrukhov, Mol. Biol. Evol. 2002, 19(4), 406.
M. L. Rodrigues, T. F. Oliveira, I. A. C. Pereira, M. Archer, EMBO J. 2006, 25(24), 5951.
M. R. Gunner, B. Honig, Proc. Natl. Acad. Sci. U. S. A. 1991, 88(20), 9151.
P. Voigt, E.-W. Knapp, J. Biol. Chem. 2003, 278(52), 51993.
F. Fritz, D. Moss, W. Mäntele, FEBS Lett. 1992, 297(1-2), 167.
M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford Science Publications, Clarendon Press, Oxford, reprinted ed. 2009.
J. Wang, P. Cieplak, P. A. Kollman, J. Comput. Chem. 2000, 21(12), 1049.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79(2), 926.
E. D. Duée, E. Fanchon, J. Vicat, L. C. Sieker, J. Meyer, J.-M. Moulis, J. Mol. Biol. 1994, 243(4), 683.
W. H. Press Ed., Numerical recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge (Cambridgeshire); New York 1986.
S. Krapf, T. Koslowski, T. Steinbrecher, Phys. Chem. Chem. Phys. 2010, 12(32), 9516.
F. Burggraf, T. Koslowski, Biochim. Biophys. Acta, Bioenerg. 2014, 1837(1), 186.
I. Leito, I. Kaljurand, I. A. Koppel, L. M. Yagupolskii, V. M. Vlasov, J. Org. Chem. 1998, 63(22), 7868.
A. Kütt, I. Leito, I. Kaljurand, L. Sooväli, V. M. Vlasov, L. M. Yagupolskii, I. A. Koppel, J. Org. Chem. 2006, 71(7), 2829.
Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A. and Sorensen, D., LAPACK users' guide, society for industrial and applied mathematics, Philadelphia, PA, 3rd, 1999.
L. Wang, Y. Deng, J. L. Knight, Y. Wu, B. Kim, W. Sherman, J. C. Shelley, T. Lin, R. Abel, J. Chem. Theory Comput. 2013, 9(2), 1282.
N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. U. S. A. 2001, 98(18), 10037.
B. Lu, X. Cheng, J. Huang, J. A. McCammon, J. Chem. Theory Comput. 2009, 5(6), 1692.
B. Lu, X. Cheng, J. Huang, J. A. McCammon, Comput. Phys. Commun. 2010, 181(6), 1150.
E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, D. H. Brookes, L. Wilson, J. Chen, K. Liles, M. Chun, P. Li, D. W. Gohara, T. Dolinsky, R. Konecny, D. R. Koes, J. E. Nielsen, T. Head-Gordon, W. Geng, R. Krasny, G.-W. Wei, M. J. Holst, J. A. McCammon, N. A. Baker, Protein Sci. 2018, 27(1), 112.
L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, L. Wang, N. Smith, M. Petukh, E. Alexov, BMC Biophys. 2012, 5(1), 9.
J. C. Gordon, J. B. Myers, T. Folta, V. Shoja, L. S. Heath, A. Onufriev, Nucleic Acids Res. 2005, 33(Web Server), W368.
R. Anandakrishnan, B. Aguilar, A. V. Onufriev, Nucleic Acids Res. 2012, 40(W1), W537.
D. Bashford, in Scientific computing in object-oriented parallel environments, Vol. 1343 (Eds: G. Goos, J. Hartmanis, J. van Leeuwen, Y. Ishikawa, R. R. Oldehoeft, J. V. W. Reynders, M. Tholburn), Springer Berlin Heidelberg, Berlin, Heidelberg 1997, p. 233.
Z. Dauter, K. S. Wilson, L. C. Sieker, J. Meyer, J.-M. Moulis, Biochemistry 1997, 36(51), 16065.
V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, Acta Crystallogr., Sect. D: Biol. Crystallogr 2010, 66(1), 12.
C. J. Williams, J. J. Headd, N. W. Moriarty, M. G. Prisant, L. L. Videau, L. N. Deis, V. Verma, D. A. Keedy, B. J. Hintze, V. B. Chen, S. Jain, S. M. Lewis, W. B. Arendall, J. Snoeyink, P. D. Adams, S. C. Lovell, J. S. Richardson, D. C. Richardson, Protein Sci. 2018, 27(1), 293.
A. T. P. Carvalho, M. Swart, J. Chem. Inf. Model. 2014, 54(2), 613.
E. L. Packer, H. Sternlicht, J. Biol. Chem. 1975, 250(6), 2062.
T. Steinbrecher, T. Koslowski, D. A. Case, J. Phys. Chem. B 2008, 112(51), 16935.
M. L. Rodrigues, K. A. Scott, M. S. P. Sansom, I. A. C. Pereira, M. Archer, J. Mol. Biol. 2008, 381(2), 341.
D. A. Case, V. Babin, J. Berryman, R. Betz, Q. Cai, D. Cerutti, T. Cheatham, T. Darden, R. Duke, H. Gohlke, A. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. Merz, F. Paesani, D. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. Simmerling, W. Smith, J. Swails, R. Walker, J. Wang, R. Wolf, X. Wu, P. Kollman, AMBER, Vol. 14, University of California, San Francisco 2014.
S. Todorovic, M. L. Rodrigues, D. Matos, I. A. C. Pereira, J. Phys. Chem. B 2012, 116(19), 5637.
D. A. Giammona, An examination of conformational flexibility in porphyrins and bulky-ligand binding in myoglobin. PhD thesis, University of California, Davis 1984.
J. Deisenhofer, O. Epp, I. Sinning, H. Michel, J. Mol. Biol. 1995, 246(3), 429.
J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol. 1999, 285(4), 1735.
M. Schulte, K. Frick, E. Gnandt, S. Jurkovic, S. Burschel, R. Labatzke, K. Aierstock, D. Fiegen, D. Wohlwend, S. Gerhardt, O. Einsle, T. Friedrich, Nature Comm. 2019, 10, 2551.

Auteurs

Jan Kaiser (J)

Institut für Physikalische Chemie, Universität Freiburg, Freiburg im Breisgau, Germany.

Mike Castellano (M)

Institut für Physikalische Chemie, Universität Freiburg, Freiburg im Breisgau, Germany.

David Gnandt (D)

Institut für Physikalische Chemie, Universität Freiburg, Freiburg im Breisgau, Germany.

Thorsten Koslowski (T)

Institut für Physikalische Chemie, Universität Freiburg, Freiburg im Breisgau, Germany.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH