Effects of purified fibre-mixture supplementation of gestation diet on gut microbiota, immunity and reproductive performance of sows.
Animal Feed
/ analysis
Animal Nutritional Physiological Phenomena
Animals
Animals, Newborn
Cytokines
/ blood
Diet
/ veterinary
Dietary Fiber
Dietary Supplements
Estradiol
/ blood
Female
Gastrointestinal Microbiome
/ drug effects
Gene Expression Regulation
/ drug effects
Litter Size
Pregnancy
Prenatal Nutritional Physiological Phenomena
Serotonin
/ blood
Swine
/ immunology
fibre mixture
immunity
microbiota composition
reproductive performance
sows
Journal
Journal of animal physiology and animal nutrition
ISSN: 1439-0396
Titre abrégé: J Anim Physiol Anim Nutr (Berl)
Pays: Germany
ID NLM: 101126979
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
24
05
2019
revised:
27
10
2019
accepted:
18
11
2019
pubmed:
28
1
2020
medline:
1
5
2021
entrez:
28
1
2020
Statut:
ppublish
Résumé
This experiment was conducted to investigate the effects of a purified fibre-mixture (FM, 50% guar gum, 50% cellulose) supplementation of gestation diet on the immunity, faecal microbial composition and reproductive performance of sows. A day after breeding, 68 multiparous sows were randomly allocated to receive treatment with a control (CON) diet or a diet containing 3% FM (FM diet). Results showed the FM diet to be associated with a significant increase in the number of live-born piglets relative to CON (13.65 vs. 12.47, p < .05). In addition, this FM diet coincided with significantly increased faecal concentrations of butyrate on day 30 and propionate on day 100 (p < .05), with trends towards increased propionate on day 30 and increased short-chain fatty acids (SCFAs) on days 30 and 110 (p < .1). Meanwhile, FM addition markedly increased the abundance of representative SCFAs producing-related genera as Roseburia on days 30 and 110 (p < .05), Eubacterium-hallii-group on days 30 and 110 (p < .05), and Bacteroides on day 110 of gestation (p < .05). The serotonin concentration on day 110 of gestation had increased (p < .05) and that on day 30 of gestation (p < .1) exhibited a tendency to increase with the FM-supplemented diet in comparison with the CON. Besides, FM supplementation caused an increase in serum interleukin-10 concentrations on days 30 (p < .05) and 110 of gestation (p < .1), and a decrease in interferon-γ concentration on day 30 of gestation (p < .05). Together these results indicated that purified FM was able to improve sow reproductive performance through a mechanism potentially linked with a bias towards type-2 helper T-cell differentiation that supported embryonic survival and thereby improve reproductive yields. Changes in metabolites produced by the intestinal microbiome may thus have an impact on host immunity and reproductive performance.
Substances chimiques
Cytokines
0
Dietary Fiber
0
Serotonin
333DO1RDJY
Estradiol
4TI98Z838E
Types de publication
Journal Article
Randomized Controlled Trial, Veterinary
Langues
eng
Sous-ensembles de citation
IM
Pagination
1144-1154Subventions
Organisme : Guangxi provincial project on S&T base and special projects for talents
ID : AD17195076
Informations de copyright
© 2020 Blackwell Verlag GmbH.
Références
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70, 567-590. https://doi.org/10.1152/physrev.1990.70.2.567
Bertrand, P. P., & Bertrand, R. L. (2010). Serotonin release and uptake in the gastrointestinal tract. Autonomic Neuroscience, 153, 47-57. https://doi.org/10.1016/j.autneu.2009.08.002
Bertrand, R. L., Senadheera, S., Tanoto, A., Tan, K. L., Howitt, L., Chen, H., … Bertrand, P. P. (2012). Serotonin availability in rat colon is reduced during a western diet model of obesity. AJP Gastrointestinal and Liver Physiology, 303(3), 424-434. https://doi.org/10.1152/ajpgi.00048.2012
Brownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25, 238-250. https://doi.org/10.1016/j.foodhyd.2009.11.013
Chabeauti, E., Noblet, J., & Carré, B. (1991). Digestion of plant cell walls from four different sources in growing pigs. Animal Feed Science and Technology, 32(1-3), 207-213. https://doi.org/10.1016/0377-8401(91)90024-M
Chaouat, G., Menu, E., Clark, D. A., Dy, M., Minkowski, M., & Wegmann, T. G. (1990). Control of fetal survival in CBA× DBA/2 mice by lymphokine therapy. Journal of Reproduction and Fertility, 89, 447-458. https://doi.org/10.1530/jrf.0.0890447
Che, L., Feng, D., Wu, D., Fang, Z. F., Lin, Y., & Yan, T. (2011). Effect of dietary fibre on reproductive performance of sows during the first two parities. Reproduction in Domestic Animals, 46, 1061-1066. https://doi.org/10.1111/j.1439-0531.2011.01787.x
Darroch, C. S., Dove, C. R., Maxwell, C. V., Johnson, Z. B., & Southern, L. L. (2008). A regional evaluation of the effect of fiber type in gestation diets on sow reproductive performance1,2. Journal of Animal Science, 86, 1573-1578. https://doi.org/10.2527/jas.2007-0662
Farmer, C., Robert, S., & Matte, J. J. (1996). Lactation performance of sows fed a bulky diet during gestation and receiving growth hormone-releasing factor during lactation. Journal of Animal Science, 74, 1298. https://doi.org/10.2527/1996.7461298x
Guillemet, R., Dourmad, J. Y., & MeunierSalaün, M. C. (2007). Feeding behavior in primiparous lactating sows: Impact of a high-fiber diet during pregnancy. Pigs and Poultry, 84, 2474. https://doi.org/10.2527/jas.2006-024
Haimovici, F., Hill, J. A., & Anderson, D. J. (1991). The effects of soluble products of activated lymphocytes and macrophages on blastocyst implantation events in vitro. Biology of Reproduction, 44, 69-75. https://doi.org/10.1095/biolreprod44.1.69
Jha, R., & Berrocoso, J. D. (2015). Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal, 9(9), 1441-1452. https://doi.org/10.1017/S1751731115000919
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165, 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041
Kong, X. F., Ji, Y. J., Li, H. W., Zhu, Q., Blachier, F., Geng, M. M., … Yin, Y.-L. (2017). Colonic luminal microbiota and bacterial metabolite composition in pregnant huanjiang mini-pigs: Effects of food composition at different times of pregnancy. Scientific Reports, 6, 37224. https://doi.org/10.1038/srep37224
Lee, W. J., & Hase, K. (2014). Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology, 10(6), 416-424. https://doi.org/10.1038/nchembio.1535
Lim, B. O., Yamada, K., Nonaka, M., Kuramoto, Y., Hung, P., & Sugano, M. (1997). Dietary fibers modulate indices of intestinal immune function in rats. Journal of Nutrition, 127, 663-667. https://doi.org/10.1093/jn/127.5.663
Lin, Y., Han, X. F., Fang, Z. F., Che, L. Q., Wu, D., Wu, X. Q., & Wu, C. M. (2012). The beneficial effect of fiber supplementation in high- or low-fat diets on fetal development and antioxidant defense capacity in the rat. European Journal of Nutrition, 51, 19-27. https://doi.org/10.1007/s00394-011-0185-4
Molinari, R., Manzi, L., Ricci, S., D'Aquino, M., Tomassi, G., Papeschi, C., & Merendino, N. (2009). Diets rich in whole wheat improve redox status and enhance immune responses in rats. Food and Agricultural Immunology, 20, 10. https://doi.org/10.1080/09540100902838206
Montagne, L., Pluske, J. R., & Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108, https://doi.org/10.1016/S0377-8401(03)00163-9
Mosnier, E., Le Floc'h, N., Etienne, M., Ramaekers, P., Sève, B., & Père, M. C. (2010). Reduced feed intake of lactating primiparous sows is associated with increased insulin resistance during the peripartum period and is not modified through supplementation with dietary tryptophan. Journal of Animal Science, 88, 612. https://doi.org/10.2527/jas.2008-1768
Mössner, R., & Lesch, K. P. (1998). Role of serotonin in the immune system and in neuroimmune interactions. Brain Behavior and Immunity, 12(4), 249-271. https://doi.org/10.1006/brbi.1998.0532
Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., … Idzko, M. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and t-cell priming capacity of dendritic cells in vitro and in vivo. PLoS ONE, 4, e6453. https://doi.org/10.1371/journal.pone.0006453
National Research Council (NRC) (2012). Nutrient requirements of swine. Washington, DC: National Academy Press.
NSNG (2010). National swine nutrition guide. Ames, IA: U.S. Pork Center of Excellence.
Oliviero, C., Heinonen, M., Valros, A., & Peltoniemi, O. (2010). Environmental and sow-related factors affecting the duration of farrowing. Animal Reproduction Science, 119, 85-91. https://doi.org/10.1016/j.anireprosci.2009.12.009
Owusuasiedu, A., Patience, J. F., Laarveld, B., Van Kessel, A. G., Simmins, P. H., & Zijlstra, R. T. (2006). Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. Journal of Animal Science, 84, 843-852. https://doi.org/10.2527/2006.844843x
Peetschwering, C. M. C. V. D., Kemp, B., Binnendijk, G. P., Hartog, L. A. D., Spoolder, H. A. M., & Verstegen, M. W. A. (2003). Performance of sows fed high levels of nonstarch polysaccharides during gestation and lactation over three parities. Journal of Animal Science, 81, 2247-2258. https://doi.org/10.2527/2003.8192247x
Pellegrino, T. C., & Bayer, B. M. (2002). Role of central 5-ht₂ receptors in fluoxetine-induced decreases in t lymphocyte activity. Brain Behavior and Immunity, 16(2), 87-103. https://doi.org/10.1006/brbi.2001.0625
Père, M. C., & Etienne, M. (2007). Insulin sensitivity during pregnancy, lactation, and postweaning in primiparous gilts. Journal of Animal Science, 85, 101. https://doi.org/10.2527/jas.2006-130
Piccinni, M. P., Scaletti, C., Maggi, E., & Romagnani, S. (2000). Role of hormone-controlled th1- and th2-type cytokines in successful pregnancy. Journal of Neuroimmunology, 109, 30-33. https://doi.org/10.1016/S0165-5728(00)00299-X
Pluske, J. R., Pethick, D. W., & Mullan, B. P. (1998). Differential effects of feeding fermentable carbohydrate to growing pigs on performance, gut size and slaughter characteristics. Animal Science, 67, 10. https://doi.org/10.1017/S1357729800009887
Reigstad, C. S., Salmonson, C. E., Rainey, J. F., Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., … Kashyap, P. C. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal, 29, 1395-1403. https://doi.org/10.1096/fj.14-259598
Schäfer, K. (1995). Analysis of short chain fatty acids from different intestinal samples. i: By packed column gas chromatography. Chromatographia, 40, 550-556. https://doi.org/10.1007/BF02274587
Schirmer, M., Smeekens, S. P., Vlamakis, H., Jaeger, M., Oosting, M., Franzosa, E. A., … Huttenhower, C. (2016). Linking the human gut microbiome to inflammatory cytokine production capacity. Cell, 167(4), 1125-1136. https://doi.org/10.1016/j.cell.2016.10.020
Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., … Zhou, L. (2014). Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America, 111(36), 13145-13150. https://doi.org/10.1073/pnas.1412008111
Sun, H. Q., Zhou, Y. F., Tan, C. Q., Zheng, L. F., Peng, J., & Jiang, S. W. (2014). Effects of konjac flour inclusion in gestation diets on the nutrient digestibility, lactation feed intake and reproductive performance of sows. Animal, 8, 6. https://doi.org/10.1017/S175173111400113X
Tabeling, R., Schwier, S., & Kamphues, J. (2003). Effects of different feeding and housing conditions on dry matter content and consistency of faeces in sows. Journal of Animal Physiology and Animal Nutrition, 87, 6. https://doi.org/10.1046/j.1439-0396.2003.00423.x
Takagi, T., Naito, Y., Higashimura, Y., Ushiroda, C., Mizushima, K., Ohashi, Y., … Kamada, K. (2016). Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. British Journal of Nutrition, 116, 7. https://doi.org/10.1017/S0007114516003068
Tan, C. Q., Sun, H. Q., Wei, H. K., Tan, J. J., Long, G., Jiang, S. W., & Peng, J. (2017). Effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics on lactational feed intake of sows over two successive parities. Animal 12, 1-8. https://doi.org/10.1017/S1751731117003019
Yamada, K., Tokunaga, Y., Ikeda, A., Ohkura, K. I., & Tachibana, H. (2003). Effect of dietary fiber on the lipid metabolism and immune function of aged sprague-dawley rats. Bioscience Biotechnology and Biochemistry, 67, 429-433. https://doi.org/10.1271/bbb.67.429
Yano, J., Yu, K., Donaldson, G., Shastri, G., Ann, P., Ma, L., … Hsiao, E. Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161, 264-276. https://doi.org/10.1016/j.cell.2015.02.047
Yemin, L., Qiong, W., Cole, J. R., Rosen, G. L., & Anthony, G. J. (2012). Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE, 7, e32491. https://doi.org/10.1371/journal.pone.0032491
Yui, J., Garcialloret, M., Wegmann, T. G., & Guilbert, L. J. (1994). Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta, 15, 819-835. https://doi.org/10.1016/S0143-4004(05)80184-5
Zhou, P., Zhao, Y., Zhang, P., Li, Y., Gui, T., Wang, J., … Wu, D. (2017). Microbial mechanistic insight into the role of inulin in improving maternal health in a pregnant sow model. Frontiers in Microbiology, 8, 2242. https://doi.org/10.3389/fmicb.2017.02242