Topology comparison of Twitter diffusion networks effectively reveals misleading information.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Jan 2020
Historique:
received: 30 06 2019
accepted: 08 01 2020
entrez: 30 1 2020
pubmed: 30 1 2020
medline: 3 6 2020
Statut: epublish

Résumé

In recent years, malicious information had an explosive growth in social media, with serious social and political backlashes. Recent important studies, featuring large-scale analyses, have produced deeper knowledge about this phenomenon, showing that misleading information spreads faster, deeper and more broadly than factual information on social media, where echo chambers, algorithmic and human biases play an important role in diffusion networks. Following these directions, we explore the possibility of classifying news articles circulating on social media based exclusively on a topological analysis of their diffusion networks. To this aim we collected a large dataset of diffusion networks on Twitter pertaining to news articles published on two distinct classes of sources, namely outlets that convey mainstream, reliable and objective information and those that fabricate and disseminate various kinds of misleading articles, including false news intended to harm, satire intended to make people laugh, click-bait news that may be entirely factual or rumors that are unproven. We carried out an extensive comparison of these networks using several alignment-free approaches including basic network properties, centrality measures distributions, and network distances. We accordingly evaluated to what extent these techniques allow to discriminate between the networks associated to the aforementioned news domains. Our results highlight that the communities of users spreading mainstream news, compared to those sharing misleading news, tend to shape diffusion networks with subtle yet systematic differences which might be effectively employed to identify misleading and harmful information.

Identifiants

pubmed: 31992754
doi: 10.1038/s41598-020-58166-5
pii: 10.1038/s41598-020-58166-5
pmc: PMC6987152
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1372

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 693174

Références

Lazer,  D. M. J.  et al. The science of fake news. Sci. 359, 1094–1096, https://doi.org/10.1126/science.aao2998 , http://science.sciencemag.org/content/359/6380/1094.full.pdf (2018).
doi: 10.1126/science.aao2998
Vosoughi,  S.,  Roy,  D. &  Aral,  S. The spread of true and false news online. Sci.  359, 1146–1151, https://doi.org/10.1126/science.aap9559 , http://science.sciencemag.org/content/359/6380/1146.full.pdf (2018).
doi: 10.1126/science.aap9559
Grinberg,  N.,  Joseph,  K.,  Friedland,  L.,  Swire-Thompson,  B. &  Lazer,  D. Fake news on twitter during the 2016 u.s. presidential election. Sci.  363, 374–378, https://doi.org/10.1126/science.aau2706 , http://science.sciencemag.org/content/363/6425/374.full.pdf (2019).
doi: 10.1126/science.aau2706
Bovet, A. & Makse, H. A. Influence of fake news in Twitter during the 2016 US presidential election. Nat. Commun. 10, 7, https://doi.org/10.1038/s41467-018-07761-2 (2019).
doi: 10.1038/s41467-018-07761-2 pubmed: 30602729 pmcid: 6315042
Shao, C. et al. The spread of low-credibility content by social bots. Nat. Commun. 9, 4787 (2018).
doi: 10.1038/s41467-018-06930-7
Allcott, H. & Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspectives 31, 211–36 (2017).
doi: 10.1257/jep.31.2.211
Nickerson, R. S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175 (1998).
doi: 10.1037/1089-2680.2.2.175
Fernandez,  M. &  Alani,  H. Online misinformation: Challenges and future directions. In Companion of the The Web Conference 2018 on The Web Conference 2018, 595–602 (International World Wide Web Conferences Steering Committee, 2018).
Reed,  E. S.  Turiel,  E. &  Brown,  T. Naive realism in everyday life: Implications for social conflict and misunderstanding. In Values and knowledge, 113–146 (Psychology Press, 2013).
Del Vicario, M. et al. The spreading of misinformation online. Proc. Natl. Acad. Sci. 113, 554–559 (2016).
doi: 10.1073/pnas.1517441113
Sunstein,  C. R. Echo chambers: Bush v. Gore, impeachment, and beyond (Princeton University Press, 2001).
Sunstein, C. On Rumors: How Falsehoods Spread, Why We Believe Them, What Can Be Done. (Yale University Press. Stowe, New Haven, 2007).
Pariser,  E. The filter bubble: What the Internet is hiding from you (Penguin UK, 2011).
Pierri,  F. &  Ceri,  S. False news on social media: a data-driven perspective. ACM Sigmod Rec.  48(2) (2019).
Shao, C. et al. Anatomy of an online misinformation network. PLOS ONE 13, 1–23, https://doi.org/10.1371/journal.pone.0196087 (2018).
doi: 10.1371/journal.pone.0196087
Wardle,  C. &  Derakhshan,  H. Information disorder: Toward an interdisciplinary framework for research and policy making. Counc. Eur. Rep.  27 (2017).
Wikipedia, https://en.wikipedia.org/wiki/Disinformation .
Shao,  C.,  Ciampaglia,  G. L.,  Flammini,  A. &  Menczer,  F. Hoaxy: A platform for tracking online misinformation. In Proceedings of the 25th International Conference Companion on World Wide Web, WWW ’16 Companion, 745–750, https://doi.org/10.1145/2872518.2890098 (International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 2016).
Goel, S., Anderson, A., Hofman, J. & Watts, D. J. The structural virality of online diffusion. Manag. Sci. 62, 180–196 (2015).
Mitchell,  A.,  Gottfried,  J.,  Kiley,  J. &  Matsa,  K. E. Political polarization & media habits. Pew Res. Cent.  21 (2014).
Barabási,  A.-L. Network science (Cambridge University press, 2016).
Newman,  M. Networks (Oxford University press, 2018).
Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö. N. & Pržulj, N. Graphlet-based characterization of directed networks. Sci. Reports 6, 35098 (2016).
doi: 10.1038/srep35098
Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G. & Alon, U. Subgraphs in random networks. Phys. Review E 68, 026127 (2003).
doi: 10.1103/PhysRevE.68.026127
Bagrow,  J. P. &  Bollt,  E. M. An information-theoretic, all-scales approach to comparing networks. arXiv preprint arXiv:1804.03665 (2018).
Bagrow, J. P., Bollt, E. M., Skufca, J. D. & benAvraham, D. Portraits of complex networks. EPL (Europhysics Lett.) 81, 68004, https://doi.org/10.1209/0295-5075/81/68004 (2008).
doi: 10.1209/0295-5075/81/68004
Yaveroğlu, Ö. N., Milenković, T. & Pržulj, N. Proper evaluation of alignment-free network comparison methods. Bioinforma. 31, 2697–2704 (2015).
doi: 10.1093/bioinformatics/btv170
Tantardini, M., Ieva, F., Tajoli, L. & Piccardi, C. Comparing methods for comparing networks. Sci. Reports 9, 17557, https://doi.org/10.1038/s41598-019-53708-y (2019).
doi: 10.1038/s41598-019-53708-y
Aksoy, S. & Haralick, R. M. Feature normalization and likelihood-based similarity measures for image retrieval. Pattern Recognit. Lett. 22, 563–582 (2001).
doi: 10.1016/S0167-8655(00)00112-4
Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 1–5 (2017).
Ratkiewicz,  J.  et al. Detecting and Tracking Political Abuse in Social Media. ICWSM 2011 249, https://doi.org/10.1145/1963192.1963301 1011.3768 (2011).
Monti,  F.,  Frasca,  F.,  Eynard,  D.,  Mannion,  D. &  Bronstein,  M. M. Fake news detection on social media using geometric deep learning. arXiv preprint arXiv:1902.06673 (2019).
Zhao,  Z.  et al. Fake news propagate differently from real news even at early stages of spreading. arXiv preprint arXiv:1803.03443 (2018).
Li, J. et al. Feature selection: A data perspective. ACM Comput. Surv. 50, 94:1–94:45, https://doi.org/10.1145/3136625 (2017).
doi: 10.1145/3136625
Jang, S. M. et al. A computational approach for examining the roots and spreading patterns of fake news: Evolution tree analysis. Comput. Hum. Behav. 84, 103–113 (2018).
doi: 10.1016/j.chb.2018.02.032
Badawy,  A.,  Ferrara,  E. &  Lerman,  K. Analyzing the digital traces of political manipulation: the 2016 Russian interference Twitter campaign. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 258–265 (IEEE, 2018).
Stewart,  L. G.,  Arif,  A. &  Starbird,  K. Examining trolls and polarization with a retweet network. In Proceedings ACM WSDM, Workshop on Misinformation and Misbehavior Mining on the Web (2018).
Conover, M. D., Gonçalves, B., Flammini, A. & Menczer, F. Partisan asymmetries in online political activity. EPJ Data Sci. 1, 6 (2012).
doi: 10.1140/epjds6
Bovet, A.,  Morone, F. &  Makse, H. A. Validation of Twitter opinion trends with national polling aggregates: Hillary clinton vs donald trump. Sci. Rep. 8, 8673 (2018).
Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. Tweeting from left to right: Is online political communication more than an echo chamber? Psychol. science 26, 1531–1542 (2015).
doi: 10.1177/0956797615594620

Auteurs

Francesco Pierri (F)

Politecnico di Milano, Department of Electronics, Information and Bioengineering, 20133, Milano, Italy.

Carlo Piccardi (C)

Politecnico di Milano, Department of Electronics, Information and Bioengineering, 20133, Milano, Italy.

Stefano Ceri (S)

Politecnico di Milano, Department of Electronics, Information and Bioengineering, 20133, Milano, Italy. stefano.ceri@polimi.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH