Urban areas as hotspots for bees and pollination but not a panacea for all insects.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 Jan 2020
Historique:
received: 07 04 2019
accepted: 13 01 2020
entrez: 31 1 2020
pubmed: 31 1 2020
medline: 23 2 2020
Statut: epublish

Résumé

Urbanisation is an important global driver of biodiversity change, negatively impacting some species groups whilst providing opportunities for others. Yet its impact on ecosystem services is poorly investigated. Here, using a replicated experimental design, we test how Central European cities impact flying insects and the ecosystem service of pollination. City sites have lower insect species richness, particularly of Diptera and Lepidoptera, than neighbouring rural sites. In contrast, Hymenoptera, especially bees, show higher species richness and flower visitation rates in cities, where our experimentally derived measure of pollination is correspondingly higher. As well as revealing facets of biodiversity (e.g. phylogenetic diversity) that correlate well with pollination, we also find that ecotones in insect-friendly green cover surrounding both urban and rural sites boost pollination. Appropriately managed cities could enhance the conservation of Hymenoptera and thereby act as hotspots for pollination services that bees provide to wild flowers and crops grown in urban settings.

Identifiants

pubmed: 31996690
doi: 10.1038/s41467-020-14496-6
pii: 10.1038/s41467-020-14496-6
pmc: PMC6989530
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

576

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : FZT 118

Références

Wilson, E. O. The Diversity of Life. (Harvard University Press, 1992).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
pubmed: 29045418 pmcid: 5646769 doi: 10.1371/journal.pone.0185809
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
pubmed: 31666721 doi: 10.1038/s41586-019-1684-3 pmcid: 31666721
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
pubmed: 30914632 pmcid: 6435717 doi: 10.1038/s41467-019-08974-9
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
pubmed: 25832402 doi: 10.1038/nature14324 pmcid: 25832402
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
pubmed: 31666721 doi: 10.1038/s41586-019-1684-3 pmcid: 31666721
Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
pubmed: 22988086 doi: 10.1073/pnas.1211658109 pmcid: 22988086
Vanbergen, A., the Insect Polinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
doi: 10.1890/120126
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
pubmed: 16040698 doi: 10.1126/science.1111772 pmcid: 16040698
Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. Bioscience 21, 97–105 (2017).
Umweltbundesamt https://www.umweltbundesamt.de/publikationen/umwelt-landwirtschaft-2018 . Umwelt und Landwirtschaft 2018 | Umweltbundesamt. (2018).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
doi: 10.1111/j.1600-0706.2010.18644.x
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
pubmed: 27894123 doi: 10.1038/nature20588
Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).
pubmed: 18616547 doi: 10.1111/j.1461-0248.2008.01217.x
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
pubmed: 30643247 pmcid: 6445365 doi: 10.1038/s41559-018-0769-y
Lawson, L. Agriculture: sowing the city. Nature 540, 522–523 (2016).
pubmed: 30905945 doi: 10.1038/540522a pmcid: 30905945
Knight, T. M. et al. Reflections on, and visions for, the changing field of pollination ecology. Ecol. Lett. 21, 1282–1295 (2018).
pubmed: 29968321 doi: 10.1111/ele.13094 pmcid: 29968321
Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).
doi: 10.1016/bs.aecr.2016.08.005
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459 (2011).
pubmed: 21858128 pmcid: 3155562 doi: 10.1371/journal.pone.0023459
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
pubmed: 25118722 pmcid: 4131891 doi: 10.1371/journal.pone.0104679
Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).
doi: 10.1098/rspb.2014.2849
Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847 (2017).
doi: 10.1111/1365-2435.12803
Gardiner, M. M., Burkman, C. E. & Prajzner, S. P. The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ. Entomol. 42, 1123–1136 (2013).
pubmed: 24468552 doi: 10.1603/EN12275
Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 20180807 (2018).
doi: 10.1098/rspb.2018.0807
McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
doi: 10.1007/s11252-007-0045-4
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
pubmed: 19739369 doi: 10.1890/08-1245.1
Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).
pubmed: 25865805 doi: 10.1111/ele.12427
Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).
doi: 10.1016/j.biocon.2014.02.015
Murray, T. E. et al. Local-scale factors structure wild bee communities in protected areas. J. Appl. Ecol. 49, 998–1008 (2012).
doi: 10.1111/j.1365-2664.2012.02175.x
Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).
doi: 10.1146/annurev-ecolsys-102710-145042
Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).
doi: 10.1098/rspb.2015.0294
Faith, D. P. Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann. N. Y. Acad. Sci. 1289, 69–89 (2013).
pubmed: 23773093 doi: 10.1111/nyas.12186 pmcid: 23773093
Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain 2, 66–74 (2010).
doi: 10.1016/j.cosust.2010.04.002
Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).
pubmed: 23218499 doi: 10.1016/j.tree.2012.10.015 pmcid: 23218499
Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284 (2019).
pubmed: 30655441 doi: 10.1126/science.aat6016 pmcid: 30655441
Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. 285, 20172242 (2018).
doi: 10.1098/rspb.2017.2242
Mulieri, P. R., Patitucci, L. D., Schnack, J. A. & Mariluis, J. C. Diversity and seasonal dynamics of an assemblage of sarcophagid Diptera in a gradient of urbanization. J. Insect Sci. 11, 91 (2011).
pubmed: 21870984 pmcid: 3281442 doi: 10.1673/031.011.9101
Bergerot, B., Fontaine, B., Julliard, R. & Baguette, M. Landscape variables impact the structure and composition of butterfly assemblages along an urbanization gradient. Landsc. Ecol. 26, 83–94 (2011).
doi: 10.1007/s10980-010-9537-3
Hennig, E. I. & Ghazoul, J. Plant–pollinator interactions within the urban environment. Perspect. Plant Ecol. Evol. Syst. 13, 137–150 (2011).
doi: 10.1016/j.ppees.2011.03.003
Cussans, J. et al. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland. PLoS ONE 5, e11753 (2010).
pubmed: 20668704 pmcid: 2909262 doi: 10.1371/journal.pone.0011753
Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. Biol. Sci. 283, 20160561 (2016).
pubmed: 27335419 pmcid: 4936033 doi: 10.1098/rspb.2016.0561
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
pubmed: 22678280 doi: 10.1038/nature11148 pmcid: 22678280
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
pubmed: 31663019 pmcid: 6795509 doi: 10.1126/sciadv.aax0121
Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).
pubmed: 26842058 pmcid: 4756436 doi: 10.1038/nature16532
Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).
pubmed: 25901681 doi: 10.1038/nature14420 pmcid: 25901681
Hardstone, M. C. & Scott, J. G. Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag. Sci. 66, 1171–1180 (2010).
pubmed: 20672339 doi: 10.1002/ps.2001 pmcid: 20672339
Alton, K. & Ratnieks, F. W. To bee or not to bee. Biol 60, 12–15 (2013).
Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).
pubmed: 24279275 doi: 10.1890/12-1620.1 pmcid: 24279275
Deguines, N., Julliard, R., de Flores, M., Fontaine, C. & Pirk, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).
pubmed: 23029262 pmcid: 3446938 doi: 10.1371/journal.pone.0045822
Willmer, P. Pollination and Floral Ecology. (Princeton University Press, 2011).
Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
doi: 10.1890/07-1292.1
Campbell, J. W. & Hanula, J. L. Efficiency of malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11, 399–408 (2007).
doi: 10.1007/s10841-006-9055-4
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).
pubmed: 23910579 doi: 10.1111/ele.12162
Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 24965 (2016).
pubmed: 27112993 pmcid: 4844954 doi: 10.1038/srep24965
Geiger, M. et al. Testing the global malaise trap program – How well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).
doi: 10.3897/BDJ.4.e10671
Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).
pubmed: 29782644 doi: 10.1002/ecy.2349
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–4 (2010).
pubmed: 20395285 doi: 10.1093/bioinformatics/btq166
Helmus, M. R., Bland, T. J., Williams, C. K. & Ives, A. R. Phylogenetic measures of biodiversity. Am. Nat. 169, E68–E83 (2007).
pubmed: 17230400 doi: 10.1086/511334
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
doi: 10.1146/annurev.ecolsys.33.010802.150448
Rundlöf, M., Persson, A. S., Smith, H. G. & Bommarco, R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138–145 (2014).
doi: 10.1016/j.biocon.2014.02.027
Vázquez, D. P., Morris, W. F. & Jordano, P. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8, 1088–1094 (2005).
doi: 10.1111/j.1461-0248.2005.00810.x
Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227 (2004).
doi: 10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).
pubmed: 23489285 doi: 10.1111/ele.12082
Zuur, A., Ieno, E .N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer-Verlag New York, 2009).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).
Bartón, K. MuMIn: Multi-model inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn (2018).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01
Paradis, E. & Claude, J. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
pubmed: 14734327 doi: 10.1093/bioinformatics/btg412
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology. evolution, Syst. Methods Ecol. Evol. 7, 573–579 (2016).
doi: 10.1111/2041-210X.12512
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013).

Auteurs

Panagiotis Theodorou (P)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany. panatheod@gmail.com.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany. panatheod@gmail.com.
Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06120, Halle, Germany. panatheod@gmail.com.

Rita Radzevičiūtė (R)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany.
Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany.
ESCALATE, Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
Life Sciences Center, Vilnius University, Saulėtekio al. 7, 10223, Vilnius, Lithuania.

Guillaume Lentendu (G)

Department of Ecology, University of Kaiserslautern, Erwin-Schroedinger Street Building 14, 67663, Kaiserslautern, Germany.
Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.

Belinda Kahnt (B)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.

Martin Husemann (M)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany.
Centrum für Naturkunde, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.

Christoph Bleidorn (C)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
Animal Evolution and Biodiversity, Johann-Friedrich-Bluemenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.

Josef Settele (J)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.
Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, 4031, Philippines.

Oliver Schweiger (O)

Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.

Ivo Grosse (I)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle, Germany.

Tesfaye Wubet (T)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.

Tomás E Murray (TE)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany.
National Biodiversity Data Centre, Beechfield House, WIT West Campus, X91 PE03, Waterford, Ireland.

Robert J Paxton (RJ)

General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH