Urban areas as hotspots for bees and pollination but not a panacea for all insects.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 Jan 2020
29 Jan 2020
Historique:
received:
07
04
2019
accepted:
13
01
2020
entrez:
31
1
2020
pubmed:
31
1
2020
medline:
23
2
2020
Statut:
epublish
Résumé
Urbanisation is an important global driver of biodiversity change, negatively impacting some species groups whilst providing opportunities for others. Yet its impact on ecosystem services is poorly investigated. Here, using a replicated experimental design, we test how Central European cities impact flying insects and the ecosystem service of pollination. City sites have lower insect species richness, particularly of Diptera and Lepidoptera, than neighbouring rural sites. In contrast, Hymenoptera, especially bees, show higher species richness and flower visitation rates in cities, where our experimentally derived measure of pollination is correspondingly higher. As well as revealing facets of biodiversity (e.g. phylogenetic diversity) that correlate well with pollination, we also find that ecotones in insect-friendly green cover surrounding both urban and rural sites boost pollination. Appropriately managed cities could enhance the conservation of Hymenoptera and thereby act as hotspots for pollination services that bees provide to wild flowers and crops grown in urban settings.
Identifiants
pubmed: 31996690
doi: 10.1038/s41467-020-14496-6
pii: 10.1038/s41467-020-14496-6
pmc: PMC6989530
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
576Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : FZT 118
Références
Wilson, E. O. The Diversity of Life. (Harvard University Press, 1992).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
pubmed: 29045418
pmcid: 5646769
doi: 10.1371/journal.pone.0185809
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
pubmed: 31666721
doi: 10.1038/s41586-019-1684-3
pmcid: 31666721
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
pubmed: 30914632
pmcid: 6435717
doi: 10.1038/s41467-019-08974-9
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
pubmed: 25832402
doi: 10.1038/nature14324
pmcid: 25832402
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
pubmed: 31666721
doi: 10.1038/s41586-019-1684-3
pmcid: 31666721
Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
pubmed: 22988086
doi: 10.1073/pnas.1211658109
pmcid: 22988086
Vanbergen, A., the Insect Polinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
doi: 10.1890/120126
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
pubmed: 16040698
doi: 10.1126/science.1111772
pmcid: 16040698
Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. Bioscience 21, 97–105 (2017).
Umweltbundesamt https://www.umweltbundesamt.de/publikationen/umwelt-landwirtschaft-2018 . Umwelt und Landwirtschaft 2018 | Umweltbundesamt. (2018).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
doi: 10.1111/j.1600-0706.2010.18644.x
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
pubmed: 27894123
doi: 10.1038/nature20588
Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).
pubmed: 18616547
doi: 10.1111/j.1461-0248.2008.01217.x
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
pubmed: 30643247
pmcid: 6445365
doi: 10.1038/s41559-018-0769-y
Lawson, L. Agriculture: sowing the city. Nature 540, 522–523 (2016).
pubmed: 30905945
doi: 10.1038/540522a
pmcid: 30905945
Knight, T. M. et al. Reflections on, and visions for, the changing field of pollination ecology. Ecol. Lett. 21, 1282–1295 (2018).
pubmed: 29968321
doi: 10.1111/ele.13094
pmcid: 29968321
Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).
doi: 10.1016/bs.aecr.2016.08.005
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459 (2011).
pubmed: 21858128
pmcid: 3155562
doi: 10.1371/journal.pone.0023459
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
pubmed: 25118722
pmcid: 4131891
doi: 10.1371/journal.pone.0104679
Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).
doi: 10.1098/rspb.2014.2849
Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847 (2017).
doi: 10.1111/1365-2435.12803
Gardiner, M. M., Burkman, C. E. & Prajzner, S. P. The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ. Entomol. 42, 1123–1136 (2013).
pubmed: 24468552
doi: 10.1603/EN12275
Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 20180807 (2018).
doi: 10.1098/rspb.2018.0807
McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
doi: 10.1007/s11252-007-0045-4
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
pubmed: 19739369
doi: 10.1890/08-1245.1
Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).
pubmed: 25865805
doi: 10.1111/ele.12427
Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).
doi: 10.1016/j.biocon.2014.02.015
Murray, T. E. et al. Local-scale factors structure wild bee communities in protected areas. J. Appl. Ecol. 49, 998–1008 (2012).
doi: 10.1111/j.1365-2664.2012.02175.x
Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).
doi: 10.1146/annurev-ecolsys-102710-145042
Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B Biol. Sci. 282, 20150294 (2015).
doi: 10.1098/rspb.2015.0294
Faith, D. P. Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann. N. Y. Acad. Sci. 1289, 69–89 (2013).
pubmed: 23773093
doi: 10.1111/nyas.12186
pmcid: 23773093
Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain 2, 66–74 (2010).
doi: 10.1016/j.cosust.2010.04.002
Winter, M., Devictor, V. & Schweiger, O. Phylogenetic diversity and nature conservation: where are we? Trends Ecol. Evol. 28, 199–204 (2013).
pubmed: 23218499
doi: 10.1016/j.tree.2012.10.015
pmcid: 23218499
Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284 (2019).
pubmed: 30655441
doi: 10.1126/science.aat6016
pmcid: 30655441
Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. 285, 20172242 (2018).
doi: 10.1098/rspb.2017.2242
Mulieri, P. R., Patitucci, L. D., Schnack, J. A. & Mariluis, J. C. Diversity and seasonal dynamics of an assemblage of sarcophagid Diptera in a gradient of urbanization. J. Insect Sci. 11, 91 (2011).
pubmed: 21870984
pmcid: 3281442
doi: 10.1673/031.011.9101
Bergerot, B., Fontaine, B., Julliard, R. & Baguette, M. Landscape variables impact the structure and composition of butterfly assemblages along an urbanization gradient. Landsc. Ecol. 26, 83–94 (2011).
doi: 10.1007/s10980-010-9537-3
Hennig, E. I. & Ghazoul, J. Plant–pollinator interactions within the urban environment. Perspect. Plant Ecol. Evol. Syst. 13, 137–150 (2011).
doi: 10.1016/j.ppees.2011.03.003
Cussans, J. et al. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland. PLoS ONE 5, e11753 (2010).
pubmed: 20668704
pmcid: 2909262
doi: 10.1371/journal.pone.0011753
Theodorou, P. et al. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc. Biol. Sci. 283, 20160561 (2016).
pubmed: 27335419
pmcid: 4936033
doi: 10.1098/rspb.2016.0561
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
pubmed: 22678280
doi: 10.1038/nature11148
pmcid: 22678280
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
pubmed: 31663019
pmcid: 6795509
doi: 10.1126/sciadv.aax0121
Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).
pubmed: 26842058
pmcid: 4756436
doi: 10.1038/nature16532
Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).
pubmed: 25901681
doi: 10.1038/nature14420
pmcid: 25901681
Hardstone, M. C. & Scott, J. G. Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag. Sci. 66, 1171–1180 (2010).
pubmed: 20672339
doi: 10.1002/ps.2001
pmcid: 20672339
Alton, K. & Ratnieks, F. W. To bee or not to bee. Biol 60, 12–15 (2013).
Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).
pubmed: 24279275
doi: 10.1890/12-1620.1
pmcid: 24279275
Deguines, N., Julliard, R., de Flores, M., Fontaine, C. & Pirk, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).
pubmed: 23029262
pmcid: 3446938
doi: 10.1371/journal.pone.0045822
Willmer, P. Pollination and Floral Ecology. (Princeton University Press, 2011).
Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
doi: 10.1890/07-1292.1
Campbell, J. W. & Hanula, J. L. Efficiency of malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Conserv. 11, 399–408 (2007).
doi: 10.1007/s10841-006-9055-4
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).
pubmed: 23910579
doi: 10.1111/ele.12162
Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 24965 (2016).
pubmed: 27112993
pmcid: 4844954
doi: 10.1038/srep24965
Geiger, M. et al. Testing the global malaise trap program – How well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).
doi: 10.3897/BDJ.4.e10671
Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).
pubmed: 29782644
doi: 10.1002/ecy.2349
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–4 (2010).
pubmed: 20395285
doi: 10.1093/bioinformatics/btq166
Helmus, M. R., Bland, T. J., Williams, C. K. & Ives, A. R. Phylogenetic measures of biodiversity. Am. Nat. 169, E68–E83 (2007).
pubmed: 17230400
doi: 10.1086/511334
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
doi: 10.1146/annurev.ecolsys.33.010802.150448
Rundlöf, M., Persson, A. S., Smith, H. G. & Bommarco, R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138–145 (2014).
doi: 10.1016/j.biocon.2014.02.027
Vázquez, D. P., Morris, W. F. & Jordano, P. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett. 8, 1088–1094 (2005).
doi: 10.1111/j.1461-0248.2005.00810.x
Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227 (2004).
doi: 10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).
pubmed: 23489285
doi: 10.1111/ele.12082
Zuur, A., Ieno, E .N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer-Verlag New York, 2009).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).
Bartón, K. MuMIn: Multi-model inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn (2018).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01
Paradis, E. & Claude, J. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
pubmed: 14734327
doi: 10.1093/bioinformatics/btg412
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology. evolution, Syst. Methods Ecol. Evol. 7, 573–579 (2016).
doi: 10.1111/2041-210X.12512
R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013).