Upregulation of the Coatomer Protein Complex Subunit beta 2 (COPB2) Gene Targets microRNA-335-3p in NCI-H1975 Lung Adenocarcinoma Cells to Promote Cell Proliferation and Migration.
3' Untranslated Regions
/ genetics
Adenocarcinoma of Lung
/ genetics
Apoptosis
/ genetics
Base Sequence
Bronchi
/ pathology
Cell Line, Tumor
Cell Movement
/ genetics
Cell Proliferation
/ genetics
Coatomer Protein
/ genetics
Epithelial Cells
/ metabolism
Gene Expression Regulation, Neoplastic
Humans
Lung Neoplasms
/ genetics
MicroRNAs
/ genetics
Neoplasm Invasiveness
RNA, Messenger
/ genetics
Up-Regulation
/ genetics
Journal
Medical science monitor : international medical journal of experimental and clinical research
ISSN: 1643-3750
Titre abrégé: Med Sci Monit
Pays: United States
ID NLM: 9609063
Informations de publication
Date de publication:
31 Jan 2020
31 Jan 2020
Historique:
entrez:
1
2
2020
pubmed:
1
2
2020
medline:
25
11
2020
Statut:
epublish
Résumé
BACKGROUND The coatomer protein complex subunit beta 2 (COPB2) gene is upregulated and promotes cell proliferation in some cancer cells. This study aimed to investigate the role of microRNA (miRNA) targeting by COPB2 gene expression in human lung adenocarcinoma cell lines, including NCI-H1975 cells. MATERIAL AND METHODS COPB2 expression in normal human bronchial epithelial cells and lung adenocarcinoma cells was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. NCI-H1975 human lung adenocarcinoma cells were transfected with short-interfering COPB2 (siCOPB2). Cell apoptosis and cell proliferation were evaluated by flow cytometry and Cell Counting Kit-8 (CCK-8) assays, respectively. The transwell assay evaluated cell migration. Targeting of miR-335-3p by COPB2 was predicted using TargetScan 7.2 and verified using a dual-luciferase reporter assay in NCI-H1975 cells. MiR-335-3p mimics were transfected into NCI-H1975 cells. The further functional analysis included detection of protein expression for cyclin D1, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), matrix metallopeptidase 9 (MMP9), Bcl-2, and Bax, to verify the role of miR-335-3p targeting by COPB2 in lung adenocarcinoma cells. RESULTS COPB2 was upregulated in lung adenocarcinoma cells and was a direct target of miR-335-3p mimics. COPB2 knockdown promoted cell apoptosis, inhibited cell migration and proliferation in NCI-H1975 cells. The effects of COPB2 knockdown on NCI-H1975 cells were increased by miR-335-3p mimics, which also further reduced the expression levels of cyclin D1, MMP9, and Bcl-2 and further increased TIMP-1 and Bax by siCOPB2. CONCLUSIONS This study showed that COPB2 was the functional target of miR-335-3p in NCI-H1975 human adenocarcinoma cells.
Identifiants
pubmed: 32004259
pii: 918382
doi: 10.12659/MSM.918382
pmc: PMC7006366
doi:
Substances chimiques
3' Untranslated Regions
0
COPB2 protein, human
0
Coatomer Protein
0
MIRN335 microRNA, human
0
MicroRNAs
0
RNA, Messenger
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e918382Références
Cell Cycle. 2017;16(23):2241-2248
pubmed: 29099267
Oncotarget. 2017 Jan 24;8(4):6513-6525
pubmed: 28036284
CA Cancer J Clin. 2019 Jan;69(1):7-34
pubmed: 30620402
J Clin Endocrinol Metab. 2014 Aug;99(8):2821-33
pubmed: 24758184
Sci Rep. 2018 Feb 19;8(1):3233
pubmed: 29459674
Eur Rev Med Pharmacol Sci. 2018 Feb;22(4):1084-1093
pubmed: 29509260
EMBO Mol Med. 2019 Apr;11(4):
pubmed: 30833304
Am J Respir Cell Mol Biol. 2019 Jun;60(6):659-666
pubmed: 30562054
J Am Soc Nephrol. 2014 Nov;25(11):2445-57
pubmed: 24744440
Ann Transl Med. 2015 Oct;3(18):277
pubmed: 26605323
Nat Cell Biol. 2015 Oct;17(10):1270-81
pubmed: 26344567
Cancer Sci. 2018 Feb;109(2):289-296
pubmed: 29161765
Biomed Pharmacother. 2018 Jul;103:373-380
pubmed: 29674272
Clin Cancer Res. 2009 Mar 1;15(5):1527-33
pubmed: 19223491
Nat Rev Cancer. 2016 Feb;16(2):99-109
pubmed: 26822577
Tumour Biol. 2016 Oct 8;:
pubmed: 27718128
Theranostics. 2019 Feb 20;9(5):1401-1416
pubmed: 30867840
CA Cancer J Clin. 2018 Jan;68(1):7-30
pubmed: 29313949
Eur Rev Med Pharmacol Sci. 2018 Feb;22(4):985-992
pubmed: 29509246
Cancers (Basel). 2019 Feb 23;11(2):
pubmed: 30813457
Cancer Res. 2019 Feb 15;79(4):689-698
pubmed: 30718357
Cancer Genomics Proteomics. 2019 Mar-Apr;16(2):99-119
pubmed: 30850362
Hum Mol Genet. 2017 Dec 15;26(24):4836-4848
pubmed: 29036432
PeerJ. 2018 Jul 25;6:e5285
pubmed: 30065881
Tumour Biol. 2015 Sep;36(9):6973-83
pubmed: 25861021
Cancers (Basel). 2019 Mar 11;11(3):
pubmed: 30862091
Cancer Cell Int. 2018 Sep 21;18:146
pubmed: 30258285
J Cell Biochem. 2019 Sep;120(9):15924-15932
pubmed: 31069875
Clin Cancer Res. 2015 May 15;21(10):2213-20
pubmed: 25979927
Clin Epigenetics. 2017 Oct 17;9:114
pubmed: 29075357
Mol Med Rep. 2017 Dec;16(6):8301-8306
pubmed: 28983601
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
Biosci Rep. 2017 Nov 6;37(6):
pubmed: 28951520
Pathol Oncol Res. 2017 Dec 21;:
pubmed: 29270775
J Thorac Oncol. 2019 Jul;14(7):1244-1254
pubmed: 30780002
Nat Commun. 2014 Sep 03;5:4804
pubmed: 25183545
Cancers (Basel). 2019 Feb 26;11(3):
pubmed: 30813562
Tumour Biol. 2015 Sep;36(9):6875-82
pubmed: 25846734
J Thorac Oncol. 2016 Oct;11(10):1653-71
pubmed: 27364315
FEBS Lett. 2017 Jan;591(2):382-392
pubmed: 28008602