N
A549 Cells
Adenosine
/ analogs & derivatives
Animals
Chlorocebus aethiops
DEAD Box Protein 58
/ genetics
Gene Expression Regulation
Genome, Viral
/ immunology
HeLa Cells
Host-Pathogen Interactions
/ genetics
Humans
Immune Evasion
/ genetics
Interferon Regulatory Factor-3
/ genetics
Interferon-Induced Helicase, IFIH1
/ genetics
Interferon-beta
/ genetics
Metapneumovirus
/ genetics
NF-kappa B
/ genetics
Paramyxoviridae Infections
/ genetics
RNA, Viral
/ genetics
Receptors, Immunologic
Sigmodontinae
Signal Transduction
THP-1 Cells
Vero Cells
Virion
/ genetics
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
31
01
2019
accepted:
03
12
2019
pubmed:
6
2
2020
medline:
17
7
2020
entrez:
5
2
2020
Statut:
ppublish
Résumé
Internal N
Identifiants
pubmed: 32015498
doi: 10.1038/s41564-019-0653-9
pii: 10.1038/s41564-019-0653-9
pmc: PMC7137398
mid: NIHMS1545034
doi:
Substances chimiques
IRF3 protein, human
0
Interferon Regulatory Factor-3
0
NF-kappa B
0
RNA, Viral
0
Receptors, Immunologic
0
Interferon-beta
77238-31-4
N-methyladenosine
CLE6G00625
RIGI protein, human
EC 3.6.1.-
IFIH1 protein, human
EC 3.6.1.-
DEAD Box Protein 58
EC 3.6.4.13
Interferon-Induced Helicase, IFIH1
EC 3.6.4.13
Adenosine
K72T3FS567
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
584-598Subventions
Organisme : NHGRI NIH HHS
ID : RM1 HG008935
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI090060
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008688
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI112524
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).
pubmed: 19120477
pmcid: 5489343
Loo, Y. M. & Gale, M. Jr Viral regulation and evasion of the host response. Curr. Top. Microbiol. Immunol. 316, 295–313 (2007).
pubmed: 17969453
Chow, K. T., Gale, M. Jr & Loo, Y. M. RIG-I and other RNA sensors in antiviral immunity. Annu. Rev. Immunol. 36, 667–694 (2018).
pubmed: 29677479
Wu, B. et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55, 511–523 (2014).
pubmed: 25018021
pmcid: 4142144
Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).
pubmed: 17038590
Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).
pubmed: 17038589
Schlee, M. et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25–34 (2009).
pubmed: 19576794
pmcid: 2824854
Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).
pubmed: 18591409
pmcid: 2442638
Runge, S. et al. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 10, e1004081 (2014).
pubmed: 24743923
pmcid: 3990713
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol. 3, 619–625 (2002).
pubmed: 12154373
Furuichi, Y., LaFiandra, A. & Shatkin, A. J. 5′-Terminal structure and mRNA stability. Nature 266, 235–239 (1977).
pubmed: 557727
Hyde, J. L. & Diamond, M. S. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479-480, 66–74 (2015).
pubmed: 25682435
Li, J., Wang, J. T. & Whelan, S. P. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 103, 8493–8498 (2006).
pubmed: 16709677
Ray, D. et al. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J. Virol. 80, 8362–8370 (2006).
pubmed: 16912287
pmcid: 1563844
Chen, Y. et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 7, e1002294 (2011).
pubmed: 22022266
pmcid: 3192843
Li, J., Fontaine-Rodriguez, E. C. & Whelan, S. P. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373–13384 (2005).
pubmed: 16227259
pmcid: 1262600
Ma, Y. et al. mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo. J. Virol. 88, 2913–2926 (2014).
pubmed: 24371058
pmcid: 3958058
Zust, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).
pubmed: 21217758
pmcid: 3182538
Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010).
pubmed: 21085181
pmcid: 3058805
Abbas, Y. M. et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc. Natl Acad. Sci. USA 114, E2106–E2115 (2017).
pubmed: 28251928
Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).
pubmed: 26159994
pmcid: 4511210
Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).
pubmed: 28622506
pmcid: 5657247
Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).
pubmed: 30262497
pmcid: 6436390
Zhao, B. S. et al. m
pubmed: 28192787
pmcid: 5323276
Lavi, S. & Shatkin, A. J. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Natl Acad. Sci. USA 72, 2012–2016 (1975).
pubmed: 166375
Furuichi, Y., Shatkin, A. J., Stavnezer, E. & Bishop, J. M. Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA. Nature 257, 618–620 (1975).
pubmed: 170541
Moss, B., Gershowitz, A., Stringer, J. R., Holland, L. E. & Wagner, E. K. 5′-Terminal and internal methylated nucleosides in herpes simplex virus type 1 mRNA. J. Virol. 23, 234–239 (1977).
pubmed: 196108
pmcid: 515825
Sommer, S. et al. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 3, 749–765 (1976).
pubmed: 1272797
pmcid: 342938
Kennedy, E. M. et al. Posttranscriptional m
pubmed: 29241043
pmcid: 5746179
Lichinchi, G. et al. Dynamics of the human and viral m
pubmed: 27572442
pmcid: 6053355
Xue, M. et al. Viral N
pubmed: 31597913
pmcid: 6785563
Gokhale, N. S. et al. N
pubmed: 27773535
pmcid: 5123813
Tirumuru, N. et al. N
pubmed: 27371828
pmcid: 4961459
Tan, B. et al. Viral and cellular N
pubmed: 29109479
Courtney, D. G. et al. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22, 377–386 e375 (2017).
pubmed: 28910636
pmcid: 5615858
Hesser, C. R., Karijolich, J., Dominissini, D., He, C. & Glaunsinger, B. A. N
pubmed: 29659627
pmcid: 5919695
Imam, H. et al. N
pubmed: 30104368
Durbin, A. F., Wang, C., Marcotrigiano, J. & Gehrke, L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. mBio 7, e00833-16 (2016).
pubmed: 27651356
pmcid: 5030355
Jiang, F. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–427 (2011).
pubmed: 21947008
pmcid: 3430514
Wang, X. et al. N
Wang, X. et al. N
pubmed: 4825696
pmcid: 4825696
Meyer, K. D. et al. 5′ UTR m
pubmed: 4695625
pmcid: 4695625
Schildgen, V. et al. Human metapneumovirus: lessons learned over the first decade. Clin. Microbiol. Rev. 24, 734–754 (2011).
pubmed: 21976607
pmcid: 3194831
Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070–1074 (2009).
pubmed: 19119185
pmcid: 3567915
Zheng, J. et al. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat. Commun. 9, 5366 (2018).
pubmed: 30560918
pmcid: 6299088
Devarkar, S. C., Schweibenz, B., Wang, C., Marcotrigiano, J. & Patel, S. S. RIG-I Uses an ATPase-powered translocation-throttling mechanism for kinetic proofreading of RNAs and oligomerization. Mol. Cell 72, 355–368 (2018).
pubmed: 30270105
pmcid: 6434538
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
pubmed: 16111635
Sioud, M., Furset, G. & Cekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem. Biophys. Res. Commun. 361, 122–126 (2007).
pubmed: 17658482
Chen, Y. G. et al. N
pubmed: 31474572
Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m
pubmed: 28846086
Rubio, R. M., Depledge, D. P., Bianco, C., Thompson, L. & Mohr, I. RNA m
pubmed: 30463905
pmcid: 6295168
Winkler, R. et al. m
pubmed: 30559377
Herfst, S. et al. Recovery of human metapneumovirus genetic lineages A and B from cloned cDNA. J. Virol. 78, 8264–8270 (2004).
pubmed: 15254198
pmcid: 446134
Zhang, Y., Wei, Y. & Li, J. Development and optimization of a direct plaque assay for human and avian metapneumoviruses. J. Virol. Methods 185, 61–68 (2012).
pubmed: 22684013
Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N
pubmed: 23288318
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408
pmcid: 4053844
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 4302049
pmcid: 4302049
Liu, L., Zhang, S. W., Huang, Y. & Meng, J. QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics 18, 387 (2017).
pubmed: 28859631
pmcid: 5667504
Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).
pubmed: 4829074
pmcid: 4829074
Cai, H. et al. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J. Virol. 89, 6391–6405 (2015).
pubmed: 25855728
pmcid: 4474291
Zhang, Y. et al. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J. Virol. 88, 11411–11429 (2014).
pubmed: 25056882
pmcid: 4178811