N


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
04 2020
Historique:
received: 31 01 2019
accepted: 03 12 2019
pubmed: 6 2 2020
medline: 17 7 2020
entrez: 5 2 2020
Statut: ppublish

Résumé

Internal N

Identifiants

pubmed: 32015498
doi: 10.1038/s41564-019-0653-9
pii: 10.1038/s41564-019-0653-9
pmc: PMC7137398
mid: NIHMS1545034
doi:

Substances chimiques

IRF3 protein, human 0
Interferon Regulatory Factor-3 0
NF-kappa B 0
RNA, Viral 0
Receptors, Immunologic 0
Interferon-beta 77238-31-4
N-methyladenosine CLE6G00625
RIGI protein, human EC 3.6.1.-
IFIH1 protein, human EC 3.6.1.-
DEAD Box Protein 58 EC 3.6.4.13
Interferon-Induced Helicase, IFIH1 EC 3.6.4.13
Adenosine K72T3FS567

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

584-598

Subventions

Organisme : NHGRI NIH HHS
ID : RM1 HG008935
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI090060
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008688
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI112524
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States

Commentaires et corrections

Type : CommentIn

Références

Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).
pubmed: 19120477 pmcid: 5489343
Loo, Y. M. & Gale, M. Jr Viral regulation and evasion of the host response. Curr. Top. Microbiol. Immunol. 316, 295–313 (2007).
pubmed: 17969453
Chow, K. T., Gale, M. Jr & Loo, Y. M. RIG-I and other RNA sensors in antiviral immunity. Annu. Rev. Immunol. 36, 667–694 (2018).
pubmed: 29677479
Wu, B. et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55, 511–523 (2014).
pubmed: 25018021 pmcid: 4142144
Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).
pubmed: 17038590
Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).
pubmed: 17038589
Schlee, M. et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25–34 (2009).
pubmed: 19576794 pmcid: 2824854
Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).
pubmed: 18591409 pmcid: 2442638
Runge, S. et al. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 10, e1004081 (2014).
pubmed: 24743923 pmcid: 3990713
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol. 3, 619–625 (2002).
pubmed: 12154373
Furuichi, Y., LaFiandra, A. & Shatkin, A. J. 5′-Terminal structure and mRNA stability. Nature 266, 235–239 (1977).
pubmed: 557727
Hyde, J. L. & Diamond, M. S. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479-480, 66–74 (2015).
pubmed: 25682435
Li, J., Wang, J. T. & Whelan, S. P. A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 103, 8493–8498 (2006).
pubmed: 16709677
Ray, D. et al. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J. Virol. 80, 8362–8370 (2006).
pubmed: 16912287 pmcid: 1563844
Chen, Y. et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 7, e1002294 (2011).
pubmed: 22022266 pmcid: 3192843
Li, J., Fontaine-Rodriguez, E. C. & Whelan, S. P. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373–13384 (2005).
pubmed: 16227259 pmcid: 1262600
Ma, Y. et al. mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo. J. Virol. 88, 2913–2926 (2014).
pubmed: 24371058 pmcid: 3958058
Zust, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).
pubmed: 21217758 pmcid: 3182538
Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010).
pubmed: 21085181 pmcid: 3058805
Abbas, Y. M. et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc. Natl Acad. Sci. USA 114, E2106–E2115 (2017).
pubmed: 28251928
Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).
pubmed: 26159994 pmcid: 4511210
Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).
pubmed: 28622506 pmcid: 5657247
Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).
pubmed: 30262497 pmcid: 6436390
Zhao, B. S. et al. m
pubmed: 28192787 pmcid: 5323276
Lavi, S. & Shatkin, A. J. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Natl Acad. Sci. USA 72, 2012–2016 (1975).
pubmed: 166375
Furuichi, Y., Shatkin, A. J., Stavnezer, E. & Bishop, J. M. Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA. Nature 257, 618–620 (1975).
pubmed: 170541
Moss, B., Gershowitz, A., Stringer, J. R., Holland, L. E. & Wagner, E. K. 5′-Terminal and internal methylated nucleosides in herpes simplex virus type 1 mRNA. J. Virol. 23, 234–239 (1977).
pubmed: 196108 pmcid: 515825
Sommer, S. et al. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 3, 749–765 (1976).
pubmed: 1272797 pmcid: 342938
Kennedy, E. M. et al. Posttranscriptional m
pubmed: 29241043 pmcid: 5746179
Lichinchi, G. et al. Dynamics of the human and viral m
pubmed: 27572442 pmcid: 6053355
Xue, M. et al. Viral N
pubmed: 31597913 pmcid: 6785563
Gokhale, N. S. et al. N
pubmed: 27773535 pmcid: 5123813
Tirumuru, N. et al. N
pubmed: 27371828 pmcid: 4961459
Tan, B. et al. Viral and cellular N
pubmed: 29109479
Courtney, D. G. et al. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22, 377–386 e375 (2017).
pubmed: 28910636 pmcid: 5615858
Hesser, C. R., Karijolich, J., Dominissini, D., He, C. & Glaunsinger, B. A. N
pubmed: 29659627 pmcid: 5919695
Imam, H. et al. N
pubmed: 30104368
Durbin, A. F., Wang, C., Marcotrigiano, J. & Gehrke, L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. mBio 7, e00833-16 (2016).
pubmed: 27651356 pmcid: 5030355
Jiang, F. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–427 (2011).
pubmed: 21947008 pmcid: 3430514
Wang, X. et al. N
Wang, X. et al. N
pubmed: 4825696 pmcid: 4825696
Meyer, K. D. et al. 5′ UTR m
pubmed: 4695625 pmcid: 4695625
Schildgen, V. et al. Human metapneumovirus: lessons learned over the first decade. Clin. Microbiol. Rev. 24, 734–754 (2011).
pubmed: 21976607 pmcid: 3194831
Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070–1074 (2009).
pubmed: 19119185 pmcid: 3567915
Zheng, J. et al. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat. Commun. 9, 5366 (2018).
pubmed: 30560918 pmcid: 6299088
Devarkar, S. C., Schweibenz, B., Wang, C., Marcotrigiano, J. & Patel, S. S. RIG-I Uses an ATPase-powered translocation-throttling mechanism for kinetic proofreading of RNAs and oligomerization. Mol. Cell 72, 355–368 (2018).
pubmed: 30270105 pmcid: 6434538
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
pubmed: 16111635
Sioud, M., Furset, G. & Cekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem. Biophys. Res. Commun. 361, 122–126 (2007).
pubmed: 17658482
Chen, Y. G. et al. N
pubmed: 31474572
Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m
pubmed: 28846086
Rubio, R. M., Depledge, D. P., Bianco, C., Thompson, L. & Mohr, I. RNA m
pubmed: 30463905 pmcid: 6295168
Winkler, R. et al. m
pubmed: 30559377
Herfst, S. et al. Recovery of human metapneumovirus genetic lineages A and B from cloned cDNA. J. Virol. 78, 8264–8270 (2004).
pubmed: 15254198 pmcid: 446134
Zhang, Y., Wei, Y. & Li, J. Development and optimization of a direct plaque assay for human and avian metapneumoviruses. J. Virol. Methods 185, 61–68 (2012).
pubmed: 22684013
Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N
pubmed: 23288318
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 4302049 pmcid: 4302049
Liu, L., Zhang, S. W., Huang, Y. & Meng, J. QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics 18, 387 (2017).
pubmed: 28859631 pmcid: 5667504
Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).
pubmed: 4829074 pmcid: 4829074
Cai, H. et al. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J. Virol. 89, 6391–6405 (2015).
pubmed: 25855728 pmcid: 4474291
Zhang, Y. et al. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J. Virol. 88, 11411–11429 (2014).
pubmed: 25056882 pmcid: 4178811

Auteurs

Mijia Lu (M)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Zijie Zhang (Z)

Department of Chemistry, The University of Chicago, Chicago, IL, USA.

Miaoge Xue (M)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Boxuan Simen Zhao (BS)

Department of Chemistry, The University of Chicago, Chicago, IL, USA.

Olivia Harder (O)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Anzhong Li (A)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Xueya Liang (X)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Thomas Z Gao (TZ)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Yunsheng Xu (Y)

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Jiyong Zhou (J)

College of Animal Sciences, Zhejiang University, Hangzhou, China.

Zongdi Feng (Z)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.

Stefan Niewiesk (S)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.

Mark E Peeples (ME)

Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.

Chuan He (C)

Department of Chemistry, The University of Chicago, Chicago, IL, USA.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.

Jianrong Li (J)

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA. li.926@osu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH