AATF and SMARCA2 are associated with thyroid volume in Hashimoto's thyroiditis patients.
Adult
Apoptosis
/ genetics
Apoptosis Regulatory Proteins
/ genetics
Case-Control Studies
Female
Genome-Wide Association Study
/ methods
Genotype
Hashimoto Disease
/ genetics
Heterozygote
Humans
Hypothyroidism
/ genetics
Male
Middle Aged
Polymorphism, Single Nucleotide
/ genetics
Repressor Proteins
/ genetics
Thyroid Gland
/ pathology
Thyroxine
/ genetics
Transcription Factors
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 02 2020
04 02 2020
Historique:
received:
03
09
2019
accepted:
13
01
2020
entrez:
6
2
2020
pubmed:
6
2
2020
medline:
11
11
2020
Statut:
epublish
Résumé
Thyroid volume of Hashimoto's thyroiditis (HT) patients varies in size over the course of disease and it may reflect changes in biological function of thyroid gland. Patients with subclinical hypothyroidism predominantly have increased thyroid volume whereas patients with more pronounced hypothyroidism have smaller thyroid volumes. Suggested mechanism for thyroid atrophy is thyrocyte death due to apoptosis. We performed the first genome-wide association study (GWAS) of thyroid volume in two groups of HT patients, depending on levothyroxine (LT4) therapy, and then meta-analysed across. Study included 345 HT patients in total and 6 007 322 common autosomal genetic variants. Underlying hypothesis was that genetic components that are involved in regulation of thyroid volume display their effect in specific pathophysiologic conditions of thyroid gland of HT patients. We additionally performed immunohistochemical analysis using thyroid tissues and analysed differences in expression levels of identified proteins and apoptotic marker between HT patients and controls. We found genome-wide significant association of two loci, both involved in apoptosis, with thyroid volume of HT patients: rs7212416 inside apoptosis-antagonizing transcription factor AATF (P = 8.95 × 10
Identifiants
pubmed: 32019955
doi: 10.1038/s41598-020-58457-x
pii: 10.1038/s41598-020-58457-x
pmc: PMC7000742
doi:
Substances chimiques
AATF protein, human
0
Apoptosis Regulatory Proteins
0
Repressor Proteins
0
SMARCA2 protein, human
0
Transcription Factors
0
Thyroxine
Q51BO43MG4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1754Références
Jamjoom, A. The influence of concomitant intradural pathology on the presentation and outcome of patients with acute traumatic extradural haematoma. Acta Neurochir. 115, 86–89 (1992).
doi: 10.1007/BF01406363
Albi, E. et al. The thyroid lobes: the different twins. Arch. Biochem. Biophys. 518, 16–22, https://doi.org/10.1016/j.abb.2011.12.001 (2012).
doi: 10.1016/j.abb.2011.12.001
pubmed: 22178560
Carle, A. et al. Thyroid volume in hypothyroidism due to autoimmune disease follows a unimodal distribution: evidence against primary thyroid atrophy and autoimmune thyroiditis being distinct diseases. J. Clin. Endocrinol. Metab. 94, 833–839, https://doi.org/10.1210/jc.2008-1370 (2009).
doi: 10.1210/jc.2008-1370
pubmed: 19088156
Bulow Pedersen, I. et al. A population study of the association between thyroid autoantibodies in serum and abnormalities in thyroid function and structure. Clin. Endocrinol. 62, 713–720, https://doi.org/10.1111/j.1365-2265.2005.02284.x (2005).
doi: 10.1111/j.1365-2265.2005.02284.x
Nordmeyer, J. P., Shafeh, T. A. & Heckmann, C. Thyroid sonography in autoimmune thyroiditis. A prospective study on 123 patients. Acta Endocrinol. 122, 391–395 (1990).
doi: 10.1530/acta.0.1220391
Raber, W., Gessl, A., Nowotny, P. & Vierhapper, H. Thyroid ultrasound versus antithyroid peroxidase antibody determination: a cohort study of four hundred fifty-one subjects. Thyroid. 12, 725–731, https://doi.org/10.1089/105072502760258712 (2002).
doi: 10.1089/105072502760258712
pubmed: 12225642
Phelps, E., Wu, P., Bretz, J. & Baker, J. R. Jr. Thyroid cell apoptosis. A new understanding of thyroid autoimmunity. Endocrinol. Metab. Clin. North. Am. 29, 375–388, viii (2000).
doi: 10.1016/S0889-8529(05)70137-7
Tamura, M. et al. Role of apoptosis of thyrocytes in a rat model of goiter. A possible involvement of Fas system. Endocrinol. 139, 3646–3653, https://doi.org/10.1210/endo.139.8.6140 (1998).
doi: 10.1210/endo.139.8.6140
Xu, C. et al. Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. J. Autoimmun. 75, 50–57, https://doi.org/10.1016/j.jaut.2016.07.008 (2016).
doi: 10.1016/j.jaut.2016.07.008
pubmed: 27448770
Kaczmarek, E., Lacka, K., Jarmolowska-Jurczyszyn, D., Sidor, A. & Majewski, P. Changes of B and T lymphocytes and selected apopotosis markers in Hashimoto’s thyroiditis. J. Clin. Pathol. 64, 626–630, https://doi.org/10.1136/jcp.2010.086553 (2011).
doi: 10.1136/jcp.2010.086553
pubmed: 21242329
Wang, S. H. & Baker, J. R. The role of apoptosis in thyroid autoimmunity. Thyroid. 17, 975–979, https://doi.org/10.1089/thy.2007.0208 (2007).
doi: 10.1089/thy.2007.0208
pubmed: 17900237
Wang, S. H. et al. A unique combination of inflammatory cytokines enhances apoptosis of thyroid follicular cells and transforms nondestructive to destructive thyroiditis in experimental autoimmune thyroiditis. J. Immunol. 168, 2470–2474 (2002).
doi: 10.4049/jimmunol.168.5.2470
Hansen, P. S. et al. Genetic and environmental causes of individual differences in thyroid size: a study of healthy Danish twins. J. Clin. Endocrinol. Metab. 89, 2071–2077, https://doi.org/10.1210/jc.2003-031999 (2004).
doi: 10.1210/jc.2003-031999
pubmed: 15126523
Rognoni, J. B., Penel, C., Bastiani, P., Roccabianca, M. & Lemarchand-Beraud, T. Down regulation of hypertrophied follicular cell volume in thyroid hyperplastic gland. Histol. Histopathol. 4, 193–200 (1989).
pubmed: 2520456
Kusic, Z. et al. Croatia has reached iodine sufficiency. J. Endocrinol. Invest. 26, 738–742 (2003).
doi: 10.1007/BF03347356
Bonofiglio, D. et al. Beneficial effects of iodized salt prophylaxis on thyroid volume in an iodine deficient area of southern Italy. Clin. Endocrinol. 71, 124–129, https://doi.org/10.1111/j.1365-2265.2008.03432.x (2009).
doi: 10.1111/j.1365-2265.2008.03432.x
Krejbjerg, A. et al. Iodine fortification may influence the age-related change in thyroid volume: a longitudinal population-based study (DanThyr). Eur. J. Endocrinol. 170, 507–517, https://doi.org/10.1530/EJE-13-0918 (2014).
doi: 10.1530/EJE-13-0918
pubmed: 24399250
Boas, M. et al. Association of thyroid gland volume, serum insulin-like growth factor-I, and anthropometric variables in euthyroid prepubertal children. J. Clin. Endocrinol. Metab. 94, 4031–4035, https://doi.org/10.1210/jc.2009-0939 (2009).
doi: 10.1210/jc.2009-0939
pubmed: 19602556
Fuse, Y., Saito, N., Tsuchiya, T., Shishiba, Y. & Irie, M. Smaller thyroid gland volume with high urinary iodine excretion in Japanese schoolchildren: normative reference values in an iodine-sufficient area and comparison with the WHO/ICCIDD reference. Thyroid. 17, 145–155, https://doi.org/10.1089/thy.2006.0209 (2007).
doi: 10.1089/thy.2006.0209
pubmed: 17316117
Tarnoki, A. D. et al. Genetic and environmental influence on thyroid gland volume and thickness of thyroid isthmus: a twin study. Arch. Endocrinol. Metab. 59, 487–494, https://doi.org/10.1590/2359-3997000000110 (2015).
doi: 10.1590/2359-3997000000110
pubmed: 26421673
Gomez, J. M., Maravall, F. J., Gomez, N., Guma, A. & Soler, J. Determinants of thyroid volume as measured by ultrasonography in healthy adults randomly selected. Clin. Endocrinol. 53, 629–634 (2000).
doi: 10.1111/j.1365-2265.2000.01138.x
Knudsen, N. et al. Association of tobacco smoking with goiter in a low-iodine-intake area. Arch. Intern. Med. 162, 439–443 (2002).
doi: 10.1001/archinte.162.4.439
Knudsen, N. et al. Alcohol consumption is associated with reduced prevalence of goitre and solitary thyroid nodules. Clin. Endocrinol. 55, 41–46 (2001).
doi: 10.1046/j.1365-2265.2001.01325.x
Teumer, A. et al. Genome-wide association study identifies four genetic loci associated with thyroid volume and goiter risk. Am. J. Hum. Genet. 88, 664–673, https://doi.org/10.1016/j.ajhg.2011.04.015 (2011).
doi: 10.1016/j.ajhg.2011.04.015
pubmed: 21565293
pmcid: 3146733
Pearce, S. H. et al. ETA Guideline: Management of Subclinical Hypothyroidism. Eur. Thyroid. J. 2, 215–228, https://doi.org/10.1159/000356507 (2013).
doi: 10.1159/000356507
pubmed: 24783053
pmcid: 3923601
Brcic, L. et al. Genome-wide association analysis suggests novel loci for Hashimoto’s thyroiditis. J Endocrinol Invest, https://doi.org/10.1007/s40618-018-0955-4 (2018).
doi: 10.1007/s40618-018-0955-4
Brcic, L. et al. Genome-wide association analysis suggests novel loci underlying thyroid antibodies in Hashimoto’s thyroiditis. Sci. Rep. 9, 5360, https://doi.org/10.1038/s41598-019-41850-6 (2019).
doi: 10.1038/s41598-019-41850-6
pubmed: 30926877
pmcid: 6440971
Brunn, J. et al. [Volumetric analysis of thyroid lobes by real-time ultrasound (author’s transl)]. Dtsch. Med. Wochenschr. 106, 1338–1340, https://doi.org/10.1055/s-2008-1070506 (1981).
doi: 10.1055/s-2008-1070506
pubmed: 7274082
Du Bois, D. & Du Bois, E. F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5, 303–311; discussion 312–303 (1989).
Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6, https://doi.org/10.1038/nmeth.2307 (2013).
doi: 10.1038/nmeth.2307
pubmed: 23269371
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529, https://doi.org/10.1371/journal.pgen.1000529 (2009).
doi: 10.1371/journal.pgen.1000529
pubmed: 19543373
pmcid: 2689936
Scarpa, V. et al. Treatment with thyroxine reduces thyroid volume in euthyroid children and adolescents with chronic autoimmune thyroiditis. Horm. Res. Paediatr. 73, 61–67, https://doi.org/10.1159/000271917 (2010).
doi: 10.1159/000271917
pubmed: 20190541
Dorr, H. G. et al. Levothyroxine Treatment of Euthyroid Children with Autoimmune Hashimoto Thyroiditis: Results of a Multicenter, Randomized, Controlled Trial. Horm. Res. Paediatr. 84, 266–274, https://doi.org/10.1159/000437140 (2015).
doi: 10.1159/000437140
pubmed: 26279111
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824, https://doi.org/10.1038/ng.2310 (2012).
doi: 10.1038/ng.2310
pubmed: 22706312
pmcid: 3386377
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinforma. 26, 2190–2191, https://doi.org/10.1093/bioinformatics/btq340 (2010).
doi: 10.1093/bioinformatics/btq340
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinforma. 26, 2336–2337, https://doi.org/10.1093/bioinformatics/btq419 (2010).
doi: 10.1093/bioinformatics/btq419
Rudan, I. et al. 10001 Dalmatians:” Croatia launches its national biobank. Croat. Med. J. 50, 4–6 (2009).
doi: 10.3325/cmj.2009.50.4
Mincer, D. L. & Jialal, I. In StatPearls (2019).
De Nicola, F. et al. The prolyl isomerase Pin1 affects Che-1 stability in response to apoptotic DNA damage. J. Biol. Chem. 282, 19685–19691, https://doi.org/10.1074/jbc.M610282200 (2007).
doi: 10.1074/jbc.M610282200
pubmed: 17468107
Passananti, C., Floridi, A. & Fanciulli, M. Che-1/AATF, a multivalent adaptor connecting transcriptional regulation, checkpoint control, and apoptosis. Biochem. Cell Biol. 85, 477–483, https://doi.org/10.1139/O07-062 (2007).
doi: 10.1139/O07-062
pubmed: 17713582
Bruno, T. et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell 10, 473–486, https://doi.org/10.1016/j.ccr.2006.10.012 (2006).
doi: 10.1016/j.ccr.2006.10.012
pubmed: 17157788
Bruno, T. et al. Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation. Cancer Cell 18, 122–134, https://doi.org/10.1016/j.ccr.2010.05.027 (2010).
doi: 10.1016/j.ccr.2010.05.027
pubmed: 20708154
Hopker, K. et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 31, 3961–3975, https://doi.org/10.1038/emboj.2012.236 (2012).
doi: 10.1038/emboj.2012.236
pubmed: 22909821
pmcid: 3474921
Bruno, T., Iezzi, S. & Fanciulli, M. Che-1/AATF: A Critical Cofactor for Both Wild-Type- and Mutant-p53 Proteins. Front. Oncol. 6, 34, https://doi.org/10.3389/fonc.2016.00034 (2016).
doi: 10.3389/fonc.2016.00034
pubmed: 26913241
pmcid: 4753824
Sharma, M. Apoptosis-antagonizing transcription factor (AATF) gene silencing: role in induction of apoptosis and down-regulation of estrogen receptor in breast cancer cells. Biotechnol. Lett. 35, 1561–1570, https://doi.org/10.1007/s10529-013-1257-8 (2013).
doi: 10.1007/s10529-013-1257-8
pubmed: 23801113
Khan, F. A., Al-Jameil, N., Khan, M. F., Al-Rashid, M. & Tabassum, H. Thyroid dysfunction: an autoimmune aspect. Int. J. Clin. Exp. Med. 8, 6677–6681 (2015).
pubmed: 26221205
pmcid: 4509150
Wang, S. H. et al. Microarray analysis of cytokine activation of apoptosis pathways in the thyroid. Endocrinol. 148, 4844–4852, https://doi.org/10.1210/en.2007-0126 (2007).
doi: 10.1210/en.2007-0126
Qin, Q. et al. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Braz. J. Med. Biol. Res. 45, 1202–1208 (2012).
doi: 10.1590/S0100-879X2012007500168
Ahola-Olli, A. V. et al. Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. Am. J. Hum. Genet. 100, 40–50, https://doi.org/10.1016/j.ajhg.2016.11.007 (2017).
doi: 10.1016/j.ajhg.2016.11.007
pubmed: 27989323
Chaisavaneeyakorn, S. et al. Levels of macrophage inflammatory protein 1 alpha (MIP-1 alpha) and MIP-1 beta in intervillous blood plasma samples from women with placental malaria and human immunodeficiency virus infection. Clin. Diagn. Lab. Immunol. 10, 631–636 (2003).
pubmed: 12853396
pmcid: 164254
Bellastella, G. et al. Simultaneous evaluation of the circulating levels of both Th1 and Th2 chemokines in patients with autoimmune Addison’s disease. J. Endocrinol. Invest. 34, 831–834, https://doi.org/10.3275/7414 (2011).
doi: 10.3275/7414
pubmed: 21169727
Mita, A. et al. Expression of Fas ligand by hepatic macrophages in patients with fulminant hepatic failure. Am. J. Gastroenterol. 100, 2551–2559, https://doi.org/10.1111/j.1572-0241.2005.00265.x (2005).
doi: 10.1111/j.1572-0241.2005.00265.x
pubmed: 16279913
Wang, L. et al. The BRG1- and hBRM-associated factor BAF57 induces apoptosis by stimulating expression of the cylindromatosis tumor suppressor gene. Mol. Cell Biol. 25, 7953–7965, https://doi.org/10.1128/MCB.25.18.7953-7965.2005 (2005).
doi: 10.1128/MCB.25.18.7953-7965.2005
pubmed: 16135788
pmcid: 1234311
Naidu, S. R., Love, I. M., Imbalzano, A. N., Grossman, S. R. & Androphy, E. J. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28, 2492–2501, https://doi.org/10.1038/onc.2009.121 (2009).
doi: 10.1038/onc.2009.121
pubmed: 19448667
pmcid: 2708319
Xu, X. et al. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol. Lett. 16, 3796–3804, https://doi.org/10.3892/ol.2018.9109 (2018).
doi: 10.3892/ol.2018.9109
pubmed: 30127991
pmcid: 6096159
Zhang, Z. et al. BRM/SMARCA2 promotes the proliferation and chemoresistance of pancreatic cancer cells by targeting JAK2/STAT3 signaling. Cancer Lett. 402, 213–224, https://doi.org/10.1016/j.canlet.2017.05.006 (2017).
doi: 10.1016/j.canlet.2017.05.006
pubmed: 28602977
Biggs, J. R. et al. The human brm protein is cleaved during apoptosis: the role of cathepsin G. Proc. Natl Acad. Sci. USA 98, 3814–3819, https://doi.org/10.1073/pnas.071057398 (2001).
doi: 10.1073/pnas.071057398
pubmed: 11259672
Dudek, A. H., Pfaff, F., Bolte, H., Kontchou, C. W. & Schwemmle, M. Partial inactivation of the chromatin remodelers SMARCA2 and SMARCA4 in virus-infected cells by caspase-mediated cleavage. J. Virol. https://doi.org/10.1128/JVI.00343-18 (2018).
doi: 10.1128/JVI.00343-18
pubmed: 29848589
pmcid: 6069203
Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 44, D536–541, https://doi.org/10.1093/nar/gkv1115 (2016).
doi: 10.1093/nar/gkv1115
pubmed: 26516188
pmcid: 26516188
Bruno, T. et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell 2, 387–399 (2002).
doi: 10.1016/S1535-6108(02)00182-4
Singh, P., Chan, S. W. & Hong, W. Retinoblastoma protein is functionally distinct from its homologues in affecting glucocorticoid receptor-mediated transcription and apoptosis. J. Biol. Chem. 276, 13762–13770, https://doi.org/10.1074/jbc.M100137200 (2001).
doi: 10.1074/jbc.M100137200
pubmed: 11279017
Manka, P. et al. Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment. Cancer Lett. 419, 175–186, https://doi.org/10.1016/j.canlet.2018.01.055 (2018).
doi: 10.1016/j.canlet.2018.01.055
pubmed: 29414304
Ock, S. et al. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter. FASEB J. 27, 4899–4908, https://doi.org/10.1096/fj.13-231381 (2013).
doi: 10.1096/fj.13-231381
pubmed: 23982142
Muller, K. et al. TSH compensates thyroid-specific IGF-I receptor knockout and causes papillary thyroid hyperplasia. Mol. Endocrinol. 25, 1867–1879, https://doi.org/10.1210/me.2011-0065 (2011).
doi: 10.1210/me.2011-0065
pubmed: 21980075
pmcid: 5417177
Ji, H. et al. AKT-dependent phosphorylation of Niban regulates nucleophosmin- and MDM2-mediated p53 stability and cell apoptosis. EMBO Rep. 13, 554–560, https://doi.org/10.1038/embor.2012.53 (2012).
doi: 10.1038/embor.2012.53
pubmed: 22510990
pmcid: 3367238
Majima, S., Kajino, K., Fukuda, T., Otsuka, F. & Hino, O. A novel gene “Niban” upregulated in renal carcinogenesis: cloning by the cDNA-amplified fragment length polymorphism approach. Jpn. J. Cancer Res. 91, 869–874 (2000).
doi: 10.1111/j.1349-7006.2000.tb01027.x
Ito, S. et al. Frequent expression of Niban in head and neck squamous cell carcinoma and squamous dysplasia. Head. Neck 32, 96–103, https://doi.org/10.1002/hed.21153 (2010).
doi: 10.1002/hed.21153
pubmed: 19536772
Cerutti, J. M. et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J. Clin. Invest. 113, 1234–1242, https://doi.org/10.1172/JCI19617 (2004).
doi: 10.1172/JCI19617
pubmed: 15085203
pmcid: 385398
Cerutti, J. M. et al. Diagnosis of suspicious thyroid nodules using four protein biomarkers. Clin. Cancer Res. 12, 3311–3318, https://doi.org/10.1158/1078-0432.CCR-05-2226 (2006).
doi: 10.1158/1078-0432.CCR-05-2226
pubmed: 16740752
Carvalheira, G., Nozima, B. H. & Cerutti, J. M. microRNA-106b-mediated down-regulation of C1orf24 expression induces apoptosis and suppresses invasion of thyroid cancer. Oncotarget 6, 28357–28370, https://doi.org/10.18632/oncotarget.4947 (2015).
doi: 10.18632/oncotarget.4947
pubmed: 26317551
pmcid: 4695065
Matsumoto, F. et al. A novel tumor marker, Niban, is expressed in subsets of thyroid tumors and Hashimoto’s thyroiditis. Hum. Pathol. 37, 1592–1600, https://doi.org/10.1016/j.humpath.2006.06.022 (2006).
doi: 10.1016/j.humpath.2006.06.022
pubmed: 16949643
Kasaian, K. et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer 15, 984, https://doi.org/10.1186/s12885-015-1955-9 (2015).
doi: 10.1186/s12885-015-1955-9
pubmed: 26680454
pmcid: 4683857
Zeng, R. et al. Relationship between Hashimoto’s thyroiditis and papillary thyroid carcinoma in children and adolescents. Eur. Rev. Med. Pharmacol. Sci. 22, 7778–7787, https://doi.org/10.26355/eurrev_201811_16401 (2018).
doi: 10.26355/eurrev_201811_16401
pubmed: 30536322
Uhliarova, B. & Hajtman, A. Hashimoto’s thyroiditis - an independent risk factor for papillary carcinoma. Braz. J. Otorhinolaryngol. 84, 729–735, https://doi.org/10.1016/j.bjorl.2017.08.012 (2018).
doi: 10.1016/j.bjorl.2017.08.012
pubmed: 28964693
Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599, https://doi.org/10.1038/s41467-017-00257-5 (2017).
doi: 10.1038/s41467-017-00257-5
pubmed: 28928442
pmcid: 5605711
Liu, W., Jiao, X., Thutkawkorapin, J., Mahdessian, H. & Lindblom, A. Cancer risk susceptibility loci in a Swedish population. Oncotarget 8, 110300–110310, https://doi.org/10.18632/oncotarget.22687 (2017).
doi: 10.18632/oncotarget.22687
pubmed: 29299148
pmcid: 5746383
Bunyavanich, S. et al. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Med. Genomics 7, 48, https://doi.org/10.1186/1755-8794-7-48 (2014).
doi: 10.1186/1755-8794-7-48
pubmed: 25085501
pmcid: 4127082
Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504, https://doi.org/10.1038/s41576-018-0016-z (2018).
doi: 10.1038/s41576-018-0016-z
pubmed: 29844615
pmcid: 6050137
Kawakami, A. & Eguchi, K. Involvement of apoptotic cell death in autoimmune diseases. Med. Electron. Microsc. 35, 1–8, https://doi.org/10.1007/s007950200000 (2002).
doi: 10.1007/s007950200000
pubmed: 12111401