Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 02 2020
Historique:
received: 03 09 2019
accepted: 17 01 2020
entrez: 9 2 2020
pubmed: 9 2 2020
medline: 11 11 2020
Statut: epublish

Résumé

Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.

Identifiants

pubmed: 32034223
doi: 10.1038/s41598-020-58668-2
pii: 10.1038/s41598-020-58668-2
pmc: PMC7005895
doi:

Substances chimiques

Anticholesteremic Agents 0
Rosuvastatin Calcium 83MVU38M7Q
Simvastatin AGG2FN16EV
Dinoprost B7IN85G1HY

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2158

Références

Cohen, J. D., Brinton, E. A., Ito, M. K. & Jacobson, T. A. Understanding Statin Use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J. Clin. Lipidol. 6, 208–15 (2012).
doi: 10.1016/j.jacl.2012.03.003 pubmed: 22658145 pmcid: 22658145
Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).
doi: 10.1016/S0140-6736(16)31357-5 pubmed: 27616593 pmcid: 27616593
Jacobson, T. A. et al. The STatin Adverse Treatment Experience Survey: Experience of patients reporting side effects of statin therapy. J. Clin. Lipidol. 13, 415–424 (2019).
doi: 10.1016/j.jacl.2019.04.011 pubmed: 31113745 pmcid: 31113745
Kaiser, C. Statin Side Effects Stymie Compliance | MedPage Today. (2012). Available at, https://www.medpagetoday.org/cardiology/dyslipidemia/33422?vpass=1 . (Accessed: 31st July 2017).
Deedwania, P. & Lardizabal, P. C. Benefits of statin therapy and compliance in high risk cardiovascular patients. Vasc. Health Risk Manag. 6, 843 (2010).
doi: 10.2147/VHRM.S9474 pubmed: 20957130 pmcid: 20957130
Newman, C. B. et al. Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 39 (2019).
Pedro-Botet, J., Climent, E. & Benaiges, D. Muscle and statins: from toxicity to the nocebo effect. Expert Opin. Drug Saf. 18, 573–579 (2019).
doi: 10.1080/14740338.2019.1615053 pubmed: 31070941 pmcid: 31070941
Zhang, P., Verity, M. A. & Reue, K. Lipin-1 Regulates Autophagy Clearance and Intersects with Statin Drug Effects in Skeletal Muscle. Cell Metab. 20, 267–279 (2014).
doi: 10.1016/j.cmet.2014.05.003 pubmed: 24930972 pmcid: 24930972
Koren, M. J. et al. Long-Term Efficacy and Safety of Evolocumab in Patients With Hypercholesterolemia. J. Am. Coll. Cardiol. 74, 2132–2146 (2019).
doi: 10.1016/j.jacc.2019.08.1024 pubmed: 31648705 pmcid: 31648705
Knoblauch, H., Schoewel, V., Kress, W., Rosada, A. & Spuler, S. Another Side to Statin-Related Side Effects. Ann. Intern. Med. 152, 478 (2010).
doi: 10.7326/0003-4819-152-7-201004060-00025 pubmed: 20368665 pmcid: 20368665
Thompson, P. D., Panza, G., Zaleski, A. & Taylor, B. Statin-Associated Side Effects. J. Am. Coll. Cardiol. 67, 2395–2410 (2016).
doi: 10.1016/j.jacc.2016.02.071 pubmed: 27199064 pmcid: 27199064
Tamanoi, F., Azizian, M., Ashrafi, M. & Bathaie, S. Mevalonate Pathway and Human Cancers. Curr. Mol. Pharmacol. 10, 77–85 (2017).
doi: 10.2174/1874467209666160112123205 pubmed: 26758953 pmcid: 26758953
Bookstaver, D. A., Burkhalter, N. A. & Hatzigeorgiou, C. Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am. J. Cardiol. 110, 526–9 (2012).
doi: 10.1016/j.amjcard.2012.04.026 pubmed: 22608359 pmcid: 22608359
Gupta, A. & Thompson, P. D. The relationship of vitamin D deficiency to statin myopathy. Atherosclerosis 215, 23–29 (2011).
doi: 10.1016/j.atherosclerosis.2010.11.039 pubmed: 21185021 pmcid: 21185021
Pennisi, M. et al. Vitamin D Serum Levels in Patients with Statin-Induced Musculoskeletal Pain. Dis. Markers 2019, 1–6 (2019).
doi: 10.1155/2019/3549402
Qu, H. et al. The effect of statin treatment on circulating coenzyme Q10 concentrations: an updated meta-analysis of randomized controlled trials. Eur. J. Med. Res. 23, 57 (2018).
doi: 10.1186/s40001-018-0353-6 pubmed: 30414615 pmcid: 30414615
Farooqi, M. A. M. et al. Statin therapy in the treatment of active cancer: A systematic review and meta-analysis of randomized controlled trials. PLoS One 13, e0209486 (2018).
doi: 10.1371/journal.pone.0209486 pubmed: 30571754 pmcid: 30571754
Martín Sánchez, C. et al. Disruption of the mevalonate pathway induces dNTP depletion and DNA damage. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1851, 1240–1253 (2015).
doi: 10.1016/j.bbalip.2015.06.001
Schirris, T. J. J. et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 22, 399–407 (2015).
doi: 10.1016/j.cmet.2015.08.002 pubmed: 26331605 pmcid: 26331605
Reinhart, K. M. & Woods, J. A. Strategies to preserve the use of statins in patients with previous muscular adverse effects. Am. J. Heal. Pharm. 69, 291–300 (2012).
doi: 10.2146/ajhp100700
Grunwald, S. A. et al. A prostaglandin alpha F2 analog protects from statin-induced myopathic changes in primary human muscle cells. bioRxiv 271932, https://doi.org/10.1101/271932 (2019).
Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
doi: 10.1038/nature10098
Medina, M. W. & Krauss, R. M. The Role of HMGCR Alternative Splicing in Statin Efficacy. Trends Cardiovasc. Med. 19, 173–177 (2009).
doi: 10.1016/j.tcm.2009.10.003 pubmed: 2805071 pmcid: 2805071
Leszczynska, A. et al. Different statins produce highly divergent changes in gene expression profiles of human hepatoma cells: a pilot study. Acta Biochim. Pol. 58, 635–9 (2011).
doi: 10.18388/abp.2011_2235
Wang, H. H., Garruti, G., Liu, M., Portincasa, P. & Wang, D. Q.-H. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Ann. Hepatol. 16, S27–S42 (2017).
doi: 10.5604/01.3001.0010.5495
Boschmann, M. et al. Dipeptidyl-Peptidase-IV Inhibition Augments Postprandial Lipid Mobilization and Oxidation in Type 2 Diabetic Patients. J. Clin. Endocrinol. Metab. 94, 846–852 (2009).
doi: 10.1210/jc.2008-1400
Burg, J. S. & Espenshade, P. J. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid Res. 50, 403–410 (2011).
doi: 10.1016/j.plipres.2011.07.002 pubmed: 3184313 pmcid: 3184313
Cooney, C. A. Drugs and supplements that may slow aging of the epigenome. Drug Discov. Today Ther. Strateg. 7, 57–64 (2010).
doi: 10.1016/j.ddstr.2011.03.001
Perry, R. J. et al. Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell 160, 745–758 (2015).
doi: 10.1016/j.cell.2015.01.012 pubmed: 4498261 pmcid: 4498261
Betteridge, D. J. & Carmena, R. The diabetogenic action of statins - mechanisms and clinical implications. Nat. Rev. Endocrinol. 12, 99–110 (2016).
doi: 10.1038/nrendo.2015.194 pubmed: 26668119 pmcid: 26668119
Margerie, D. et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med. Genomics 12, 80 (2019).
doi: 10.1186/s12920-019-0536-1 pubmed: 31159817 pmcid: 31159817
Wakil, S. J. & Abu-Elheiga, L. A. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. 50, S138–S143 (2009).
doi: 10.1194/jlr.R800079-JLR200 pubmed: 19047759 pmcid: 19047759
Koves, T. R. et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 7, 45–56 (2008).
doi: 10.1016/j.cmet.2007.10.013 pubmed: 18177724 pmcid: 18177724
Ly, L. D. et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 49, e291 (2017).
doi: 10.1038/emm.2016.157 pubmed: 28154371 pmcid: 28154371
Jansen, K. M. & Pavlath, G. K. Prostaglandin F2alpha promotes muscle cell survival and growth through upregulation of the inhibitor of apoptosis protein BRUCE. Cell Death Differ. 15, 1619–28 (2008).
doi: 10.1038/cdd.2008.90 pubmed: 18566603 pmcid: 18566603
Grösch, S., Niederberger, E. & Geisslinger, G. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opin. Investig. Drugs 26, 51–61 (2017).
doi: 10.1080/13543784.2017.1260544 pubmed: 27841017 pmcid: 27841017
Brewer, C. B., Bentley, J. P., Day, L. B. & Waddell, D. E. Resistance exercise and naproxen sodium: effects on a stable PGF2α metabolite and morphological adaptations of the upper body appendicular skeleton. Inflammopharmacology 23, 319–327 (2015).
doi: 10.1007/s10787-015-0248-x pubmed: 26289996 pmcid: 26289996
Trappe, T. A. et al. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am. J. Physiol. Integr. Comp. Physiol. 300, R655–R662 (2011).
doi: 10.1152/ajpregu.00611.2010
Trappe, T. A. et al. COX Inhibitor Influence on Skeletal Muscle Fiber Size and Metabolic Adaptations to Resistance Exercise in Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 71, 1289–94 (2016).
doi: 10.1093/gerona/glv231 pubmed: 5018563 pmcid: 5018563
Mansueto, G. et al. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab. 25, 182–196 (2017).
doi: 10.1016/j.cmet.2016.11.003 pubmed: 28011087 pmcid: 28011087
Mendias, C. L., Tatsumi, R. & Allen, R. E. Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve 30, 497–500 (2004).
doi: 10.1002/mus.20102 pubmed: 15372441 pmcid: 15372441
Liu, S. Z. et al. Prostaglandin E 2/cyclooxygenase pathway in human skeletal muscle: influence of muscle fiber type and age. J. Appl. Physiol. 120, 546–551 (2016).
doi: 10.1152/japplphysiol.00396.2015 pubmed: 26607246 pmcid: 26607246
Horsley, V. & Pavlath, G. K. Prostaglandin F 2α stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J. Cell Biol. 161, 111–118 (2003).
doi: 10.1083/jcb.200208085 pubmed: 12695501 pmcid: 12695501
Yew, S. F., Reeves, K. A. & Woodward, B. Effects of prostaglandin F2 alpha on intracellular pH, intracellular calcium, cell shortening and L-type calcium currents in rat myocytes. Cardiovasc. Res. 40, 538–45 (1998).
doi: 10.1016/S0008-6363(98)00195-3 pubmed: 10070495 pmcid: 10070495
Trappe, T. A., Fluckey, J. D., White, F., Lambert, C. P. & Evans, W. J. Skeletal muscle PGF(2)(alpha) and PGE(2) in response to eccentric resistance exercise: influence of ibuprofen acetaminophen. J. Clin. Endocrinol. Metab. 86, 5067–70 (2001).
pubmed: 11600586 pmcid: 11600586
Nakagawa, T. et al. A prostaglandin D2 metabolite is elevated in the urine of Duchenne muscular dystrophy patients and increases further from 8years old. Clin. Chim. Acta 423, 10–14 (2013).
doi: 10.1016/j.cca.2013.03.031 pubmed: 23603101 pmcid: 23603101
Fan, Y.-Y., Davidson, L. A., Callaway, E. S., Goldsby, J. S. & Chapkin, R. S. Differential effects of 2- and 3-series E-prostaglandins on in vitro expansion of Lgr5+ colonic stem cells. Carcinogenesis 35, 606–12 (2014).
doi: 10.1093/carcin/bgt412 pubmed: 24336194 pmcid: 24336194
Mabalirajan, U. et al. 12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma. Sci. Rep. 3, 1540 (2013).
doi: 10.1038/srep01540 pubmed: 23528921 pmcid: 23528921
Lalia, A. Z. et al. Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans. Diabetes Care 38, 1228–1237 (2015).
doi: 10.2337/dc14-3101 pubmed: 25852206 pmcid: 25852206
Ochi, E., Tsuchiya, Y. & Yanagimoto, K. Effect of eicosapentaenoic acids-rich fish oil supplementation on motor nerve function after eccentric contractions. J. Int. Soc. Sports Nutr. 14, 23 (2017).
doi: 10.1186/s12970-017-0176-9 pubmed: 5508798 pmcid: 5508798
Tsuchiya, Y., Yanagimoto, K., Ueda, H. & Ochi, E. Supplementation of eicosapentaenoic acid-rich fish oil attenuates muscle stiffness after eccentric contractions of human elbow flexors. J. Int. Soc. Sports Nutr. 16, 19 (2019).
doi: 10.1186/s12970-019-0283-x pubmed: 6466674 pmcid: 6466674
Lalia, A. Z. et al. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany. NY). 9, 1096–1129 (2017).
doi: 10.18632/aging.101210 pubmed: 5425117 pmcid: 5425117
Herbst, E. A. F. et al. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J. Physiol. 592, 1341–1352 (2014).
doi: 10.1113/jphysiol.2013.267336 pubmed: 3961091 pmcid: 3961091
Løvsletten, N. G. et al. Increased triacylglycerol - Fatty acid substrate cycling in human skeletal muscle cells exposed to eicosapentaenoic acid. PLoS One 13, e0208048 (2018).
doi: 10.1371/journal.pone.0208048 pubmed: 6264501 pmcid: 6264501
Alfaddagh, A. et al. The effect of eicosapentaenoic and docosahexaenoic acids on physical function, exercise, and joint replacement in patients with coronary artery disease: A secondary analysis of a randomized clinical trial. J. Clin. Lipidol. 12, 937–947.e2 (2018).
doi: 10.1016/j.jacl.2018.03.080 pubmed: 29752179 pmcid: 29752179
Alfaddagh, A. et al. Effect of Eicosapentaenoic and Docosahexaenoic Acids Added to Statin Therapy on Coronary Artery Plaque in Patients With Coronary Artery Disease: A Randomized Clinical Trial. J. Am. Heart Assoc. 6 (2017).
Marg, A. et al. Sarcolemmal repair is a slow process and includes EHD2. Traffic 13, 1286–94 (2012).
doi: 10.1111/j.1600-0854.2012.01386.x pubmed: 22679923 pmcid: 22679923
Bustin, S. A. et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 55, 611–622 (2009).
doi: 10.1373/clinchem.2008.112797 pubmed: 19246619 pmcid: 19246619
Lohse, M. et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40, W622–7 (2012).
doi: 10.1093/nar/gks540 pubmed: 22684630 pmcid: 22684630
Sapcariu, S. C. et al. Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX 1, 74–80 (2014).
doi: 10.1016/j.mex.2014.07.002 pubmed: 4472845 pmcid: 4472845
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511 pubmed: 19029910 pmcid: 19029910
Bray, M.-A., Vokes, M. S. & Carpenter, A. E. Using CellProfiler for Automatic Identification and Measurement of Biological Objects in Images. in Current Protocols in Molecular Biology 109, 14.17.1–14.17.13 (John Wiley & Sons, Inc., 2015).
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
doi: 10.1186/gb-2006-7-10-r100 pubmed: 1794559 pmcid: 1794559
Logan, D. Calculating multinucleated cells in muscle fibers - Image Analysis - Image.sc Forum. Available at, https://forum.image.sc/t/calculating-multinucleated-cells-in-muscle-fibers/12776/2 (2014).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
doi: 10.1093/bioinformatics/btp616 pubmed: 19910308 pmcid: 19910308
Gould, J. GENE-E. Available at, https://software.broadinstitute.org/GENE-E/index.html (2016).
Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–70 (2015).
doi: 10.1093/nar/gkv468 pubmed: 4489295 pmcid: 4489295
Oliveros, J. C. Venny. An interactive tool for comparing lists with Venn’s diagrams. Available at, https://bioinfogp.cnb.csic.es/tools/venny/index.html (2015).
Hu, Y. et al. OmicCircos: A Simple-to-Use R Package for the Circular Visualization of Multidimensional Omics Data. Cancer Inform. 13, 13–20 (2014).
doi: 10.4137/CIN.S13495 pubmed: 3921174 pmcid: 3921174
Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, (P3 (2003).
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
doi: 10.1186/1471-2105-10-48 pubmed: 19192299 pmcid: 19192299
Vastrik, I. et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 8, R39 (2007).
doi: 10.1186/gb-2007-8-3-r39 pubmed: 17367534 pmcid: 17367534

Auteurs

Stefanie Anke Grunwald (SA)

Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany. stefanie.grunwald@charite.de.
Charité Universitätsmedizin Berlin, Berlin, 13125, Germany. stefanie.grunwald@charite.de.

Oliver Popp (O)

Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany.
Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany.

Stefanie Haafke (S)

Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.

Nicole Jedraszczak (N)

Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.

Ulrike Grieben (U)

Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.

Kathrin Saar (K)

Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany.

Giannino Patone (G)

Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany.

Wolfram Kress (W)

Institute for Human Genetics, Julius-Maximilians-University of Würzburg, Würzburg, 97074, Germany.

Elisabeth Steinhagen-Thiessen (E)

Interdisciplinary Lipid Metabolic Center, Charité Universitätsmedizin Berlin, Berlin, 13353, Germany.

Gunnar Dittmar (G)

Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany.
Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany.

Simone Spuler (S)

Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany. simone.spuler@charite.de.
Charité Universitätsmedizin Berlin, Berlin, 13125, Germany. simone.spuler@charite.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH