Intraoperative 3-T Magnetic Resonance Spectroscopy for Detection of Proliferative Remnants of Glioma.
Cho/NAA
Choline
Glioma
Intraoperative magnetic resonance imaging
Magnetic resonance spectroscopy
N-acetyl-L-aspartate
Journal
World neurosurgery
ISSN: 1878-8769
Titre abrégé: World Neurosurg
Pays: United States
ID NLM: 101528275
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
27
10
2019
revised:
28
01
2020
accepted:
28
01
2020
pubmed:
9
2
2020
medline:
15
7
2020
entrez:
9
2
2020
Statut:
ppublish
Résumé
Few studies have examined the usefulness of intraoperative magnetic resonance spectroscopy (iMRS) for identifying abnormal signals at the resection margin during glioma surgery. The aim of this study was to assess the value of iMRS for detecting proliferative remnants of glioma at the resection margin. Fifteen patients with newly diagnosed glioma underwent single-voxel 3-T iMRS concurrently with intraoperative magnetic resonance imaging-assisted surgery. Volumes of interest (VOIs) were placed at T2-hyperintense or contrast-enhancing lesions at the resection margin. In addition to technical verification, the correlation between the MIB-1 labeling index (a pathologic feature) and metabolites measured using iMRS (N-acetyl-L-aspartate [NAA], choline [Cho], and Cho/NAA ratio) was analyzed. iMRS was performed for 20 VOIs in 15 patients. Fourteen (70%) of these VOIs were confirmed to be MIB-1-positive. There was a significant positive correlation between the Cho/NAA ratio and MIB-1 index (r = 0.46, P = 0.04). Cho level (P = 0.003) and Cho/NAA ratio (P = 0.002) were significantly higher in VOIs that were MIB-1-positive than in those that were MIB-1-negative. Detection of a Cho level >1.074 mM and a Cho/NAA ratio >0.48 using iMRS resulted in high diagnostic accuracy for MIB-1-positive remnants (Cho level: sensitivity 86%, specificity 100%; Cho/NAA ratio: sensitivity 79%, specificity 100%). This study provides evidence that 3-T iMRS can detect proliferative remnants of glioma at the resection margin using the Cho level and Cho/NAA ratio, suggesting that intraoperative magnetic resonance imaging-assisted surgery with iMRS would be practicable in glioma.
Sections du résumé
BACKGROUND
Few studies have examined the usefulness of intraoperative magnetic resonance spectroscopy (iMRS) for identifying abnormal signals at the resection margin during glioma surgery. The aim of this study was to assess the value of iMRS for detecting proliferative remnants of glioma at the resection margin.
METHODS
Fifteen patients with newly diagnosed glioma underwent single-voxel 3-T iMRS concurrently with intraoperative magnetic resonance imaging-assisted surgery. Volumes of interest (VOIs) were placed at T2-hyperintense or contrast-enhancing lesions at the resection margin. In addition to technical verification, the correlation between the MIB-1 labeling index (a pathologic feature) and metabolites measured using iMRS (N-acetyl-L-aspartate [NAA], choline [Cho], and Cho/NAA ratio) was analyzed.
RESULTS
iMRS was performed for 20 VOIs in 15 patients. Fourteen (70%) of these VOIs were confirmed to be MIB-1-positive. There was a significant positive correlation between the Cho/NAA ratio and MIB-1 index (r = 0.46, P = 0.04). Cho level (P = 0.003) and Cho/NAA ratio (P = 0.002) were significantly higher in VOIs that were MIB-1-positive than in those that were MIB-1-negative. Detection of a Cho level >1.074 mM and a Cho/NAA ratio >0.48 using iMRS resulted in high diagnostic accuracy for MIB-1-positive remnants (Cho level: sensitivity 86%, specificity 100%; Cho/NAA ratio: sensitivity 79%, specificity 100%).
CONCLUSIONS
This study provides evidence that 3-T iMRS can detect proliferative remnants of glioma at the resection margin using the Cho level and Cho/NAA ratio, suggesting that intraoperative magnetic resonance imaging-assisted surgery with iMRS would be practicable in glioma.
Identifiants
pubmed: 32035198
pii: S1878-8750(20)30235-7
doi: 10.1016/j.wneu.2020.01.217
pii:
doi:
Substances chimiques
Creatine
MU72812GK0
Choline
N91BDP6H0X
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
149-157Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.