A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici.
Journal
BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720
Informations de publication
Date de publication:
11 02 2020
11 02 2020
Historique:
received:
17
10
2019
accepted:
27
01
2020
entrez:
13
2
2020
pubmed:
13
2
2020
medline:
1
9
2020
Statut:
epublish
Résumé
The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Sections du résumé
BACKGROUND
The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures.
RESULTS
Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species.
CONCLUSIONS
Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Identifiants
pubmed: 32046716
doi: 10.1186/s12915-020-0744-3
pii: 10.1186/s12915-020-0744-3
pmc: PMC7014611
doi:
Substances chimiques
DNA Transposable Elements
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12Références
Bioinformatics. 2008 Mar 1;24(5):637-44
pubmed: 18218656
Fungal Genet Biol. 2015 Jun;79:17-23
pubmed: 26092785
BMC Genomics. 2016 May 18;17:370
pubmed: 27194050
BMC Bioinformatics. 2017 Apr 12;18(1):214
pubmed: 28403817
Trends Genet. 2004 Sep;20(9):417-23
pubmed: 15313550
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
BMC Biol. 2018 Jan 11;16(1):5
pubmed: 29325559
Gene. 1988 Dec 15;73(1):237-44
pubmed: 3243435
Evol Lett. 2019 May 01;3(3):299-312
pubmed: 31171985
Mob DNA. 2015 Jun 02;6:11
pubmed: 26045719
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E753-E761
pubmed: 29317534
PLoS One. 2013 Sep 12;8(9):e72572
pubmed: 24069150
Genetics. 2018 Mar;208(3):1209-1229
pubmed: 29263029
Sci Rep. 2019 Jul 3;9(1):9642
pubmed: 31270361
Annu Rev Phytopathol. 2018 Aug 25;56:21-40
pubmed: 29768136
Annu Rev Phytopathol. 2016 Aug 4;54:419-41
pubmed: 27359369
PLoS Genet. 2010 Dec 23;6(12):e1001189
pubmed: 21203495
ISME J. 2017 May;11(5):1189-1204
pubmed: 28117833
mBio. 2016 Oct 18;7(5):
pubmed: 27795389
Adv Appl Microbiol. 2015;90:29-92
pubmed: 25596029
Genome Biol Evol. 2018 Apr 1;10(5):1298-1314
pubmed: 29722826
Curr Opin Microbiol. 2018 Dec;46:34-42
pubmed: 29455143
Genome Biol Evol. 2010;2:646-55
pubmed: 20688752
Mamm Genome. 2019 Oct;30(9-10):289-300
pubmed: 31414176
Bioinformatics. 2014 May 1;30(9):1236-40
pubmed: 24451626
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
BMC Plant Biol. 2010 May 27;10:98
pubmed: 20507561
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5887-92
pubmed: 16581904
Front Microbiol. 2018 Dec 12;9:3096
pubmed: 30619175
Pest Manag Sci. 2008 Jul;64(7):681-4
pubmed: 18366065
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):384-91
pubmed: 24505076
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37
pubmed: 21593126
Gene. 1995 Dec 29;167(1-2):GC1-10
pubmed: 8566757
Annu Rev Genomics Hum Genet. 2011;12:187-215
pubmed: 21801021
Genome Biol Evol. 2018 Jun 1;10(6):1416-1429
pubmed: 29850789
J Mol Biol. 2004 May 14;338(5):1027-36
pubmed: 15111065
Mol Plant Pathol. 2009 Nov;10(6):735-47
pubmed: 19849781
Database (Oxford). 2015 Feb 27;2015:
pubmed: 25725060
Nat Protoc. 2018 Jun;13(6):1213-1231
pubmed: 29725120
Microbiol Mol Biol Rev. 2002 Sep;66(3):447-59, table of contents
pubmed: 12208999
BMC Biol. 2018 Jul 16;16(1):78
pubmed: 30012138
New Phytol. 2016 Mar;209(4):1613-24
pubmed: 26592855
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
Mol Biol Evol. 2017 Nov 1;34(11):2808-2822
pubmed: 28981698
Bioinformatics. 2014 Jun 15;30(12):i302-9
pubmed: 24931998
New Phytol. 2018 Aug;219(3):1048-1061
pubmed: 29693722
Curr Biol. 2019 Apr 1;29(7):1161-1168.e6
pubmed: 30880010
Curr Opin Microbiol. 2008 Oct;11(5):472-7
pubmed: 19086349
PLoS Genet. 2013 Jun;9(6):e1003567
pubmed: 23785303
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Adv Genet. 2002;46:439-50
pubmed: 11931234
Proc Biol Sci. 2010 Nov 7;277(1698):3213-21
pubmed: 20591863
Curr Opin Genet Dev. 2015 Dec;35:57-65
pubmed: 26451981
PLoS Pathog. 2019 Dec 20;15(12):e1007780
pubmed: 31860693
Mol Ecol. 2005 Aug;14(9):2683-93
pubmed: 16029470
Nat Genet. 2018 Feb;50(2):278-284
pubmed: 29335547
Fungal Genet Biol. 2015 Jun;79:33-41
pubmed: 26092788
mSphere. 2017 Oct 25;2(5):
pubmed: 29085913
BMC Bioinformatics. 2006 Feb 09;7:62
pubmed: 16469098
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Bioinformatics. 2011 Jun 15;27(12):1691-2
pubmed: 21493652
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
BMC Genomics. 2017 Mar 27;18(1):261
pubmed: 28347275
Mob Genet Elements. 2011 May;1(1):55-65
pubmed: 22016845
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Nucleic Acids Res. 2014 Sep;42(15):e119
pubmed: 24990371
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
PLoS Pathog. 2019 Apr 4;15(4):e1007606
pubmed: 30947302
Genetics. 2015 Nov;201(3):1213-28
pubmed: 26392286
Plant Cell. 2014 Jan;26(1):121-35
pubmed: 24488960
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Mol Plant Pathol. 2018 Jan;19(1):3-6
pubmed: 29226559
Annu Rev Plant Biol. 2015;66:513-45
pubmed: 25923844
PLoS Genet. 2011 Jun;7(6):e1002070
pubmed: 21695235
Plant Cell. 2011 Sep;23(9):3117-28
pubmed: 21908723
BMC Genomics. 2013 Apr 23;14:274
pubmed: 23617724
Nature. 2006 Nov 16;444(7117):323-9
pubmed: 17108957
Bioinformatics. 2017 Mar 1;33(5):743-745
pubmed: 28062442
Pest Manag Sci. 2018 Feb;74(2):302-313
pubmed: 28881414
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8
pubmed: 17485477
New Microbes New Infect. 2015 Jun 26;7:72-85
pubmed: 26442149
New Phytol. 2016 Apr;210(2):743-61
pubmed: 26680733
Genome Biol. 2016 Jan 18;17:7
pubmed: 26781660
Mol Plant Microbe Interact. 2017 Mar;30(3):231-244
pubmed: 28121239
Microb Genom. 2019 Feb;5(2):
pubmed: 30714895
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41
pubmed: 28460038
Front Plant Sci. 2015 Aug 06;6:573
pubmed: 26300892
Mol Biol Evol. 2020 Jan 1;37(1):221-239
pubmed: 31553475
Bioinformatics. 2016 Mar 1;32(5):767-9
pubmed: 26559507
BMC Bioinformatics. 2018 Oct 3;19(1):348
pubmed: 30285604
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Sci Rep. 2015 Nov 04;5:15565
pubmed: 26531059
Nat Rev Genet. 2007 Dec;8(12):973-82
pubmed: 17984973
Genome Biol. 2015 Aug 06;16:157
pubmed: 26243257
Genome Biol Evol. 2015 May 19;7(6):1613-27
pubmed: 25994930
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Nat Microbiol. 2017 Mar 28;2:17040
pubmed: 28350002
Epigenetics Chromatin. 2015 Oct 01;8:41
pubmed: 26430472
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101
pubmed: 29771380
Microb Genom. 2016 Apr 29;2(4):e000055
pubmed: 28348850
Genome Res. 2016 Aug;26(8):1091-100
pubmed: 27325116
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786