Comparison of the outcomes after haploidentical and cord blood salvage transplantations for graft failure following allogeneic hematopoietic stem cell transplantation.


Journal

Bone marrow transplantation
ISSN: 1476-5365
Titre abrégé: Bone Marrow Transplant
Pays: England
ID NLM: 8702459

Informations de publication

Date de publication:
09 2020
Historique:
received: 07 10 2019
accepted: 28 01 2020
revised: 27 01 2020
pubmed: 14 2 2020
medline: 22 6 2021
entrez: 14 2 2020
Statut: ppublish

Résumé

Graft failure (GF) is a life-threatening complication after allogeneic stem cell transplantation (SCT). Although salvage SCTs can be performed with haploidentical donor (HID) or cord blood (CB), no study has compared the performances of these two sources. Using nationwide registration data, we compared the transplant outcomes of patients who developed GF and underwent salvage transplantation from HID (n = 129) and CB (n = 570) from 2007 to 2016. The HID group demonstrated better neutrophil recovery (79.7 vs. 52.5% at 30 days, P < 0.001). With a median follow-up of 3 years, both groups demonstrated similar overall survival (OS) and nonrelapse mortality (NRM; 1-year OS, 33.1 vs. 34.6% and 1-year NRM, 45.1 vs. 49.8% for the HID and CB groups). After adjustments for other covariates, OS did not differ in both groups. However, HID was associated with a lower NRM (hazard ratio, 0.71; P = 0.038) than CB. The incidence of acute graft-versus-host disease (GVHD)-related deaths was significantly higher in the HID group, although infection-related deaths were observed more frequently in the CB group. HID may be a promising salvage SCT option after GF due to its faster engraftment and low NRM.

Identifiants

pubmed: 32051535
doi: 10.1038/s41409-020-0821-9
pii: 10.1038/s41409-020-0821-9
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1784-1795

Investigateurs

Kaito Harada (K)
Shigeo Fuji (S)
Sachiko Seo (S)
Toshimitsu Ueki (T)
Masao Ogata (M)

Références

nccn.org [internet]. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia. Version 3. 2019. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp . Accessed 11 Aug.
Kumar R, Bonfim C, George B. Hematopoietic cell transplantation for aplastic anemia. Curr Opin Hematol. 2017;24:509–14.
pubmed: 28877042 doi: 10.1097/MOH.0000000000000382
Canaani J, Beohou E, Labopin M, Ghavamzadeh A, Beelen D, Hamladji RM, et al. Trends in patient outcome over the past two decades following allogeneic stem cell transplantation for acute myeloid leukaemia: an ALWP/EBMT analysis. J Intern Med. 2019;285:407–18.
pubmed: 30372796 doi: 10.1111/joim.12854
Bacigalupo A, Sormani MP, Lamparelli T, Gualandi F, Occhini D, Bregante S, et al. Reducing transplant-related mortality after allogeneic hematopoietic stem cell transplantation. Haematologica. 2004;89:1238–47.
pubmed: 15477210
Narimatsu H, Kami M, Miyakoshi S, Murashige N, Yuji K, Hamaki T, et al. Graft failure following reduced-intensity cord blood transplantation for adult patients. Br J Haematol. 2006;132:36–41.
pubmed: 16371018 doi: 10.1111/j.1365-2141.2005.05832.x
Olsson R, Remberger M, Schaffer M, Berggren DM, Svahn BM, Mattsson J, et al. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013;48:537–43.
pubmed: 23222384 doi: 10.1038/bmt.2012.239
Olsson RF, Logan BR, Chaudhury S, Zhu X, Akpek G, Bolwell BJ, et al. Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia. 2015;29:1754–62.
pubmed: 25772027 pmcid: 4527886 doi: 10.1038/leu.2015.75
Cluzeau T, Lambert J, Raus N, Dessaux K, Absi L, Delbos F, et al. Risk factors and outcome of graft failure after HLA matched and mismatched unrelated donor hematopoietic stem cell transplantation: a study on behalf of SFGM-TC and SFHI. Bone Marrow Transplant. 2016;51:687–91.
pubmed: 26855158 doi: 10.1038/bmt.2015.351
Sun YQ, He GL, Chang YJ, Xu LP, Zhang XH, Han W, et al. The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation. Ann Hematol. 2015;94:1699–705.
pubmed: 26152553 doi: 10.1007/s00277-015-2440-x
Masouridi-Levrat S, Simonetta F, Chalandon Y. Immunological basis of bone marrow failure after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:362.
pubmed: 27695456 pmcid: 5025429 doi: 10.3389/fimmu.2016.00362
Ozdemir ZN, Civriz Bozdağ S. Graft failure after allogeneic hematopoietic stem cell transplantation. Transfus Apher Sci. 2018;57:163–7.
pubmed: 29724627 doi: 10.1016/j.transci.2018.04.014
Kawashima N, Terakura S, Nishiwaki S, Koyama D, Ozawa Y, Ito M, et al. Increase of bone marrow macrophages and CD8+ T lymphocytes predict graft failure after allogeneic bone marrow or cord blood transplantation. Bone Marrow Transplant. 2017;52:1164–70.
pubmed: 28368374 doi: 10.1038/bmt.2017.58
Martin PJ. Prevention of allogeneic marrow graft rejection by donor T cells that do not recognize recipient alloantigens: potential role of a veto mechanism. Blood. 1996;88:962–9.
pubmed: 8704255 doi: 10.1182/blood.V88.3.962.962
Murphy WJ, Bennett M, Kumar V, Longo DL. Donor-type activated natural killer cells promote marrow engraftment and B cell development during allogeneic bone marrow transplantation. J Immunol. 1992;148:2953–60.
pubmed: 1573278
Ciurea SO, Thall PF, Milton DR, Barnes TH, Kongtim P, Carmazzi Y, et al. Complement-binding donor-specific anti-HLA antibodies and risk of primary graft failure in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21:1392–8.
pubmed: 25985919 pmcid: 4506716 doi: 10.1016/j.bbmt.2015.05.001
Kongtim P, Cao K, Ciurea SO. Donor specific Anti-HLA antibody and risk of graft failure in haploidentical stem cell transplantation. Adv Hematol. 2016;2016:4025073.
pubmed: 26904122 pmcid: 4745275 doi: 10.1155/2016/4025073
Kong Y, Wang YT, Hu Y, Han W, Chang YJ, Zhang XH, et al. The bone marrow microenvironment is similarly impaired in allogeneic hematopoietic stem cell transplantation patients with early and late poor graft function. Bone Marrow Transplant. 2016;51:249–55.
pubmed: 26437066 doi: 10.1038/bmt.2015.229
Selleri C, Sato T, Anderson S, Young NS, Maciejewski JP. Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol. 1995;165:538–46.
pubmed: 7593233 doi: 10.1002/jcp.1041650312
Merli P, Caruana I, De Vito R, Strocchio L, Weber G, Del Bufalo F, et al. Role of IFNγ in immune-mediated graft failure occurring after allogeneic hematopoietic stem cell transplantation. Haematologica. 2019. https://doi.org/10.3324/haematol.2019.216101 .
Alcazer V, Conrad A, Valour F, Bachy E, Salles G, Huynh A, et al. Early-onset severe infections in allogeneic hematopoietic stem cell transplantation recipients with graft failure. Am J Hematol. 2019;94:E109–11.
pubmed: 30663089 doi: 10.1002/ajh.25406
Schriber J, Agovi MA, Ho V, Ballen KK, Bacigalupo A, Lazarus HM, et al. Second unrelated donor hematopoietic cell transplantation for primary graft failure. Biol Blood Marrow Transplant. 2010;16:1099–106.
pubmed: 20172038 pmcid: 2897953 doi: 10.1016/j.bbmt.2010.02.013
Fuji S, Nakamura F, Hatanaka K, Taniguchi S, Sato M, Mori S, et al. Peripheral blood as a preferable source of stem cells for salvage transplantation in patients with graft failure after cord blood transplantation: a retrospective analysis of the registry data of the Japanese Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2012;18:1407–14.
pubmed: 22430086 doi: 10.1016/j.bbmt.2012.02.014
Waki F, Masuoka K, Fukuda T, Kanda Y, Nakamae M, Yakushijin K, et al. Feasibility of reduced-intensity cord blood transplantation as salvage therapy for graft failure: results of a nationwide survey of adult patients. Biol Blood Marrow Transplant. 2011;17:841–51.
pubmed: 20849969 doi: 10.1016/j.bbmt.2010.09.005
Onishi Y, Mori T, Kako S, Koh H, Uchida N, Kondo T, et al. Outcome of second transplantation using umbilical cord blood for graft failure after allogeneic hematopoietic stem cell transplantation for aplastic anemia. Biol Blood Marrow Transplant. 2017;23:2137–42.
pubmed: 28844947 doi: 10.1016/j.bbmt.2017.08.020
Lund TC, Liegel J, Bejanyan N, Orchard PJ, Cao Q, Tolar J, et al. Second allogeneic hematopoietic cell transplantation for graft failure: poor outcomes for neutropenic graft failure. Am J Hematol. 2015;90:892–6.
pubmed: 26149534 pmcid: 4579006 doi: 10.1002/ajh.24111
Shimada K, Narimatsu H, Morishita Y, Kohno A, Saito S, Kato Y. Severe regimen-related toxicity of second transplantation for graft failure following reduced-intensity cord blood transplantation in an adult patient. Bone Marrow Transplant. 2006;37:787–8.
pubmed: 16501589 doi: 10.1038/sj.bmt.1705312
Davies SM, Weisdorf DJ, Haake RJ, Kersey JH, McGlave PB, Ramsay NK, et al. Second infusion of bone marrow for treatment of graft failure after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994;14:73–7.
pubmed: 7951123
Rashidi A, Slade M, DiPersio JF, Westervelt P, Vij R, Romee R. Post-transplant high-dose cyclophosphamide after HLA-matched vs haploidentical hematopoietic cell transplantation for AML. Bone Marrow Transplant. 2016;51:1561–4.
pubmed: 27526282 doi: 10.1038/bmt.2016.217
Bashey A, Zhang X, Jackson K, Brown S, Ridgeway M, Solh M, et al. Comparison of outcomes of hematopoietic cell transplants from T-replete haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and hla-identical sibling donors: a multivariable analysis including disease risk index. Biol Blood Marrow Transplant. 2016;22:125–33.
pubmed: 26359881 doi: 10.1016/j.bbmt.2015.09.002
Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62.
pubmed: 25940714 doi: 10.1182/blood-2015-02-627786
Singh H, Nikiforow S, Li S, Ballen KK, Spitzer TR, Soiffer R, et al. Outcomes and management strategies for graft failure after umbilical cord blood transplantation. Am J Hematol. 2014;89:1097–101.
pubmed: 25195500 doi: 10.1002/ajh.23845
Kliman D, Bilmon I, Kwan J, Blyth E, Micklethwaite K, Panicker S, et al. Rescue haploidentical peripheral blood stem cell transplantation for engraftment failure: a single-centre case series. Intern Med J. 2018;48:988–91.
pubmed: 30133987 doi: 10.1111/imj.13979
Yoshihara S, Ikegame K, Taniguchi K, Kaida K, Kim EH, Nakata J, et al. Salvage haploidentical transplantation for graft failure using reduced-intensity conditioning. Bone Marrow Transplant. 2012;47:369–73.
pubmed: 21478920 doi: 10.1038/bmt.2011.84
Moscardó F, Romero S, Sanz J, Sanz MA, Montesinos P, Lorenzo I, et al. T cell-depleted related HLA-mismatched peripheral blood stem cell transplantation as salvage therapy for graft failure after single unit unrelated donor umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2014;20:1060–3.
pubmed: 24685578 doi: 10.1016/j.bbmt.2014.03.024
Tang BL, Zhu XY, Zheng CC, Liu HL, Geng LQ, Wang XB, et al. Successful early unmanipulated haploidentical transplantation with reduced-intensity conditioning for primary graft failure after cord blood transplantation in hematologic malignancy patients. Bone Marrow Transplant. 2015;50:248–52.
pubmed: 25365067 doi: 10.1038/bmt.2014.250
Prata PH, Resche-Rigon M, Blaise D, Socié G, Rohrlich PS, Milpied N, et al. Outcomes of salvage haploidentical transplant with post-transplant cyclophosphamide for rescuing graft failure patients: a report on behalf of the francophone society of bone marrow transplantation and cellular therapy. Biol Blood Marrow Transplant. 2019. https://doi.org/10.1016/j.bbmt.2019.05.013 .
Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10.
pubmed: 26547570 doi: 10.1007/s12185-015-1894-x
Kanda J. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation. Int J Hematol. 2016;103:11–9.
pubmed: 26588927 doi: 10.1007/s12185-015-1907-9
Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33.
pubmed: 19896087 pmcid: 2861656 doi: 10.1016/j.bbmt.2009.07.004
Armand P, Gibson CJ, Cutler C, Ho VT, Koreth J, Alyea EP, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood. 2012;120:905–13.
pubmed: 22709687 pmcid: 3412351 doi: 10.1182/blood-2012-03-418202
Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:825–8.
pubmed: 7581076
Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28:250–9.
pubmed: 1887253
Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.
pubmed: 23208313 doi: 10.1038/bmt.2012.244
Kato M, Matsumoto K, Suzuki R, Yabe H, Inoue M, Kigasawa H, et al. Salvage allogeneic hematopoietic SCT for primary graft failure in children. Bone Marrow Transplant. 2013;48:1173–8.
pubmed: 23524639 doi: 10.1038/bmt.2013.36
Ruggeri A, Sun Y, Labopin M, Bacigalupo A, Lorentino F, Arcese W, et al. Post-transplant cyclophosphamide versus anti-thymocyte globulin as graft- versus-host disease prophylaxis in haploidentical transplant. Haematologica. 2017;102:401–10.
pubmed: 27758821 pmcid: 5286948 doi: 10.3324/haematol.2016.151779
Terakura S, Kuwatsuka Y, Yamasaki S, Wake A, Kanda J, Inamoto Y, et al. GvHD prophylaxis after single-unit reduced intensity conditioning cord blood transplantation in adults with acute leukemia. Bone Marrow Transplant. 2017;52:1261–7.
pubmed: 28604665 doi: 10.1038/bmt.2017.116

Auteurs

Kaito Harada (K)

Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan. k.harada@fuji.tokai-u.jp.

Shigeo Fuji (S)

Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.

Sachiko Seo (S)

Department of Hematology and Oncology, Dokkyo Medical University School of Medicine, Mibu, Japan.

Junya Kanda (J)

Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Toshimitsu Ueki (T)

Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan.

Fumihiko Kimura (F)

Division of Hematology, National Defense Medical College, Tokorozawa, Japan.

Koji Kato (K)

Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.

Naoyuki Uchida (N)

Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan.

Kazuhiro Ikegame (K)

Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.

Makoto Onizuka (M)

Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan.

Ken-Ichi Matsuoka (KI)

Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan.

Noriko Doki (N)

Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.

Toshiro Kawakita (T)

Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan.

Yasushi Onishi (Y)

Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan.

Shingo Yano (S)

Clinical oncology and Hematology, The Jikei University School of Medicine, Tokyo, Japan.

Takahiro Fukuda (T)

Hematopoietic Stem Cell Transplantation Division, National Cancer Center Hospital, Tokyo, Japan.

Minoko Takanashi (M)

Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan.

Yoshinobu Kanda (Y)

Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan.

Yoshiko Atsuta (Y)

Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan.
Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Masao Ogata (M)

Department of Hematology, Oita University Hospital, Yufu, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH